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Abstract

Driven largely by multiple ground-based radial-velocity (RV) surveys and photometric
space missions such as Kepler and K2, the discovery of new exoplanets has increased
rapidly since the early 2000s. However, due to a target selection bias in favor of
main-sequence stars, only a handful of transiting planets have been found orbiting
evolved hosts. These planets, most of which are giants, hold important information
regarding the formation and evolution of planetary systems.

Correlations between stellar mass or metallicity and giant-planet occurrence con-
tain evidence pointing to the mechanisms responsible for giant-planet formation. Oc-
currence rate studies of close-in giant planets around dwarf and giant stars can inform
on the impact of stellar evolution on planetary systems. For instance, planetary ra-
dius characterization in evolved systems can shed light on the processes responsible
for giant-planet radius inflation. However, to learn about these and other processes,
it is necessary to have a statistical sample of well characterized giant planets orbiting
evolved stars.

In this thesis, I sought to increase the sample of known giant planets orbiting
red-giant stars, focusing on data from NASA’s Transiting Exoplanet Survey Satellite
(TESS) mission, and to improve their characterization. Specifically, I focused on
close-in giant planets orbiting (preferably) oscillating low-luminosity red-giant branch
(LLRGB) stars.

To improve characterization, I developed a method to model planetary transits
and stellar signals simultaneously, implementing Gaussian processes to model stellar
granulation and the oscillations envelope in the time domain using equivalent expres-
sions to the ones commonly used in frequency-domain models from the literature.
Tests with TESS simulated light curves and Kepler light curves show that this model
is capable of recovering the underlying stellar signals present in light curves and that
it agrees, within uncertainties, with current power-spectrum fitting methods. In par-
ticular, results show that the model enables time-domain asteroseismology, inferring
the frequency of maximum oscillation amplitude, νmax, to within 1%.

Additionally, when modeling stellar signals and transits simultaneously, estimated
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planetary parameters have higher accuracies and lower uncertainties overall, when
compared to simpler transit models, common in the literature. The method’s imple-
mentation is open-source and available to the community.

Regarding the planet search, I assembled a pipeline, mostly comprised of third-
party open-source software, for the extraction and correction of light curves from
the TESS full frame images, and subsequent transit search and validation. With
this pipeline, I explored a sample of ∼40,000 bright LLRGB stars in the southern
hemisphere of TESS ’s field of view. The sample was limited to stars with radii above
3 R�, to ensure that oscillations would be present below the Nyquist frequency of
TESS long-cadence data, and below 8 R�, to ensure that transits of Jupiter-sized
planets would be visible in the light curve. Targets selected were also constrained to
TESS magnitudes lower than 10 to increase the probability of detecting oscillations.

Overall, I identified four planet candidates, two of which are not currently known
planets and orbit red-giant stars. Radial-velocity follow-up observations of both these
candidates have tentatively confirmed their planetary nature. The first candidate is
a hot Jupiter with a possibly inflated radius of 1.24 RJ on a 6.20-day-period orbit.
The second candidate has a radius of 1.02 RJ and an orbital period of 9.96 days.

Finally, I also confirmed the planetary nature of an additional candidate, not part
of the above sample, through RV observations. This planet is also a possibly inflated
1.28 RJ giant planet on a 4.38-day-period orbit around a red-giant star.

The formal confirmation of all candidates, in particular the two found in the above
planet search, should allow for an occurrence rate study of close-in giants orbiting
giants with TESS. Furthermore, two of the planets have potentially inflated radii, and
can be useful as testbeds to determine the origins and efficiency of planetary radius
inflation.
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Resumo

Múltiplos rasterios de velocidades radiais e missões espaciais de fotometria como o
Kepler e o K2 impulsionaram consideravelmente o número de novos exoplanetas de-
scobertos desde o início deste século. No entanto, dado um enviesamento da seleção
de alvos para estrelas de sequência principal, poucos planetas são conhecidos que
transitem estrelas evoluídas. Estes, cuja maioria são planetas gigantes, contêm infor-
mação importante para desvendar os mistérios da formação e evolução dos sistemas
planetários.

Correlações entre a metalicidade e/ou a massa de estrelas e a presença de plan-
etas gigantes fornecem pistas acerca dos mecanismos responsáveis pela formação de
planetas gigantes. Já a comparação de taxas de ocorrência de planetas gigantes de
curto período entre estrelas anãs e gigantes permite inferir o impacto que a evolução
estelar tem nos sistemas planetários. Finalmente, a caracterização detalhada do raio
de planetas gigantes que orbitem estrelas gigantes pode conter informação única para
perceber as origens da inflação dos raios observada em planetas gigantes. Por estas
razões, é necessário encontrar e caracterizar detalhadamente mais planetas gigantes
que orbitem estrelas evoluídas.

Nesta tese procurei aumentar a população de planetas gigantes conhecidos que
orbitam gigantes vermelhas e melhorar a sua caracterização, tendo como foco os dados
da missão TESS, recentemente lançada. Especificamente, concentrei-me em planetas
gigantes de curto período que orbitem gigantes vermelhas de baixa luminosidade,
preferencialmente com oscilações.

Para melhorar a caracterização destes sistemas planetários, desenvolvi um modelo
para descrever os sinais do trânsito do planeta e da estrela simultaneamente. Para
isso, utilizei processos Gaussianos para capturar os sinais da granulação e oscilações
estelares no domínio temporal, através de expressões equivalentes às do domínio das
frequências, encontradas na literatura.

Testes deste modelo com curvas de luz simuladas do TESS e curvas de luz do
Kepler demonstram que o modelo é capaz de recuperar os sinais verdadeiros presentes
nos dados e que obtém resultados iguais (dentro das incertezas) aos dos obtidos através
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do espectro de potências. Em particular, os resultados demonstram a capacidade do
modelo de fazer asterosismologia no domínio temporal, estimando νmax a 1% do valor
real, desde que as oscilações sejam detetáveis.

Para além disso, quando são considerados trânsitos e sinais estelares simultanea-
mente, os parâmetros planetários estimados pelo nosso modelo têm maior exatidão
e menores incertezas, quando comparados com os de um modelo mais simples de
trânsito, comum na literatura.

No contexto da procura de planetas, desenvolvi uma pipeline, constituída maiori-
tariamente por software aberto, para extrair e corrigir curvas de luz das imagens de
campo largo do TESS, fazendo posteriormente uma procura e validação de trânsitos
nas mesmas. Usando esta pipeline, explorei uma amostra de gigantes vermelhas bril-
hantes, de baixa luminosidade, no hemisfério sul do TESS. A amostra foi limitada a
estrelas com raios superiores a 3 R�, de forma a garantir que as oscilações estelares se
encontrassem abaixo da frequência de Nyquist dos dados de longa cadência do TESS,
e com raios inferiores a 8 R�, para garantir que trânsitos de planetas do tamanho de
Júpiter fossem visíveis nas curvas de luz. As estrelas selecionadas foram também re-
stringidas a magnitudes TESS inferiores a 10 para que houvesse maior probabilidade
de detetar oscilações.

Como resultado da procura, identifiquei quatro planetas candidatos, dois dos quais
não são planetas conhecidos e orbitam gigantes vermelhas. Observações de veloci-
dades radiais de ambos apontam provisoriamente para a sua natureza planetária. O
primeiro candidato é um Júpiter quente com um raio possivelmente inflacionado de
1.24 RJ, numa órbita de 6.20 dias. Já o segundo candidato tem um raio de 1.02 RJ

e um período orbital de 9.96 dias.
Finalmente, confirmei também a natureza de outro planeta candidato, que não

fazia parte da amostra anterior, através de observações de velocidades radiais. Este
planeta é gigante, tem um raio que poderá estar inflacionado de 1.28 RJ, e orbita
uma gigante vermelha a cada 4.38 dias.

A confirmação formal de todos os candidatos, em particular os dois encontrados
na procura acima mencionada, possibilitarão um estudo da taxa de ocorrência de
gigantes de curto período que orbitam gigantes com o TESS. Para além disso, dois dos
planetas encontrados têm raios potencialmente inflacionados, o que poderá permitir
estudar as origens e eficiência da inflação de raios planetários.
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Chapter 1

Introduction

The field of exoplanets has had a meteoric rise in research ever since its recent in-
ception. In the 26 years since the first confirmed exoplanet discovery orbiting a
solar-like star, by Mayor and Queloz (1995), the number of known exoplanets has
grown to over 4000 (from The Extrasolar Planets Encyclopaedia1; Schneider et al.
2011), driven largely by radial-velocity (RV) surveys and photometric space missions.
Most of these systems, however, orbit main-sequence stars, with the population of
planets around evolved stars being considerably smaller. Of these planets orbiting
evolved stars, the majority has been found through radial-velocity surveys, with only
a handful of known transiting planets.

In this introduction, I try to motivate the search and characterization of more of
these transiting systems, in particular with the advent of NASA’s Transiting Exo-
planet Survey Satellite (TESS) mission. I start, in Section 1.1, with some highlights
of this short yet highly packed history of exoplanetary science to arrive at the TESS
mission (Ricker et al. 2015), one of the latest photometric space missions to launch
and promise new discoveries, and the one at the forefront of this thesis’ work. I then
expand on the ways in which the current understanding of planets orbiting evolved
stars has lagged behind that of main-sequence hosts and how TESS presents a great
opportunity to advance this particular topic. Section 1.2 then discusses the synergies
that exoplanet studies have with asteroseismology, underlining some of the method-
ologies from the latter field that enhance our understanding of planetary systems. In
Section 1.3, I discuss the state of the art with respect to giant exoplanets orbiting
evolved stars, exploring open questions and weighing in on the potential of TESS to
provide answers. Finally, Section 1.4 lays out our objectives and details the structure
of this thesis.

1exoplanet.eu

1

http://www.exoplanet.eu


1.1 Exoplanets: An historical perspective

Although initial detections of planets would still take a few more decades, in 1952
Otto Struve wrote a paper outlining two techniques that could lead to the detection
of planets around other stars (Struve 1952), which have proven to be the two major
techniques in the discovery of new exoplanets today.

The first technique involved detecting the gravitational influence a planetary com-
panion has on a host star. This influence can be detected by determining the line of
sight velocity of the star through Doppler shifts in the star’s spectral lines over the
companion’s orbital period. This technique is referred to as radial velocity (RV), and
the velocity semi-amplitude, K, is proportional to the ratio between the masses of
the planet, Mp, and the star, M?,

K ∝ Mp

M
2/3
?

. (1.1)

For inclined orbits, Mp is replaced by Mp sin i, where i is the orbital inclination
(i = 90◦ for edge-on orbits and i = 0◦ for face-on orbits).

The second technique involved the dimming of the host star’s brightness, F , in
the event that a planetary companion crossed in front of it from an observer’s line-
of-sight. This dimming is proportional to the fraction of the stellar disk blocked, and
consequently proportional to the squared ratio between the radii of the planet, Rp,
and the star, R?,

∆F ∝
(
Rp

R?

)2
. (1.2)

Through the two techniques, a measure of both a planet’s mass and radius can be
estimated, which, when combined, can provide a measure of the planet’s mean density.
Both these techniques are responsible for most of the confirmed exoplanets known
today, with the The Extrasolar Planets Encyclopaedia citing ∼91.8% of all discoveries.
For a discussion on the multiple existing methods for exoplanet detection, including
the two mentioned before, see the work of Santos et al. (2020) and chapter 1 of
Perryman (2018).

1.1.1 First detections

The first confident detection of a planet-mass object outside the Solar System was
not found orbiting a solar-like star but a pulsar (Wolszczan and Frail 1992). For
main-sequence stars, early suggestions of planetary-mass object detections started in
the late 1980s with the works of Campbell et al. (1988), Latham et al. (1989), and
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Hatzes and Cochran (1993), using the RV method. But it was the discovery of 51
Pegasi b, by Mayor and Queloz (1995), that sparked the rise of exoplanet studies.

Besides being the first unambiguous detection of a planet orbiting a solar-like
star, 51 Pegasi b was also a surprising discovery due to the unexpected anatomy of
its planetary system. This planet had a minimum mass of 0.47 Jupiter masses (MJ),
but was orbiting its star every 4.2 days at a distance of 0.05 AU (astronomical units),
much closer than was expected, given what was known from the Solar System (for
reference, the elliptical orbit of Mercury is never closer than 0.3 AU from the Sun,
with Jupiter orbiting at about 5.2 AU). These close-in giant planets took on the name
of hot Jupiters and were the most common type of planet found in the early days
(Marcy and Butler 1996; Butler and Marcy 1996) due to their large sizes and masses,
and very short orbital periods. The discovery of these short-period giants also led
to a revolution in planet formation theories, which until then could only rely on the
Solar System’s planets to inform their hypotheses (see Section 1.3).

The first confirmed detection of a transiting planet would take a few extra years,
with Charbonneau et al. (2000) and Henry et al. (2000) both announcing the detection
of the transit of the 1.27 Jupiter radii (RJ) planet, HD 209458 b, a planet which had
been discovered by the RV method. The first planet discovery using the transit
method was OGLE-TR-56 b (Udalski et al. 2002; Konacki et al. 2003).

1.1.2 Space revolution

From those initial detections, planet observations started to ramp up, with RV surveys
led by newly developed spectrographs, with some notable examples being CORALIE
(Queloz et al. 2000), HIRES (High Resolution Echelle Spectrometer ; Vogt et al. 1994)
and HARPS (High Accuracy Radial velocity Planet Searcher ; Mayor et al. 2003). This
had the important consequence of leading to the discovery of planets in the Neptune
(Santos et al. 2004a; Butler et al. 2004; McArthur et al. 2004) and super-Earth (Mayor
et al. 2011) mass regimes.

This was accompanied by transit surveys, with multiple ground-based facilities
sprouting, e.g. OGLE (Optical Gravitational Lensing Experiment; Udalski 2003),
HAT (Hungarian Automated Telescope; Bakos et al. 2004), TrES (Trans-Atlantic
Exoplanet Survey; see Alonso et al. 2004, and references therein) and WASP (Wide
Angle Search for Planets; Pollacco et al. 2006).

However, atmospheric variability proved problematic for ground-based photomet-
ric observations, especially for lower brightness targets, and so innovation led to space,
with CoRoT (Convection Rotation and planetary Transits; Auvergne et al. 2009) lead-
ing the way and Kepler (Borucki et al. 2009) revolutionizing the field, with thousands
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Figure 1.1: Mass-period diagram of known exoplanets orbiting red-giant branch stars.
Planets detected by the transit method are depicted as red circles and those detected
in RV surveys as blue crosses (in which case the masses are lower limits). The dashed-
dotted line marks the mass of Neptune. The shaded area approximately corresponds
to the parameter space probed by TESS considering one sector (i.e. 27.4 days) of
data (M > MNeptune; P ≤ 20d). Inspired by figure 11 of Campante et al. (2016b).

of new exoplanet candidates being detected in the years following its launch (Batalha
et al. 2013; Morton et al. 2016).

Most planets found with the Kepler mission orbited dwarf stars, which was ex-
pected, given the sample of stars observed by the satellite (Batalha et al. 2010). This
choice was premeditated in an effort to expedite the discovery of a habitable Earth-
like planet orbiting a Sun-like star. Unfortunately, this left transiting planets orbiting
evolved stars largely unexplored, with most systems being detected by RV surveys
instead (Johnson et al. 2007b; Johnson et al. 2010b; Reffert et al. 2015), and only
a handful from transits confirmed at the time (Huber et al. 2013a; Lillo-Box et al.
2014; Barclay et al. 2015; Quinn et al. 2015) and an additional one confirmed years
later (Chontos et al. 2019).

Following the failure of one of its reaction wheels, the Kepler spacecraft was re-
purposed into the K2 mission (Howell et al. 2014). Unlike its predecessor, where
the satellite’s 10×10-degree field-of-view camera observed a single patch of the sky
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continuously for 4 years, K2 would observe a different field every ∼80 days along
the ecliptic plane. Due to the larger area of the sky covered throughout the mission
and to a community-driven target selection, K2 greatly expanded on the number of
evolved stars around which to look for planets. This led to the discovery of addi-
tional planets transiting evolved hosts (Grunblatt et al. 2016; Grunblatt et al. 2017;
Grunblatt et al. 2019) as well as to the first ensemble studies of transiting exoplanets
orbiting giant stars (Grunblatt et al. 2018; Grunblatt et al. 2019).

Figure 1.1 illustrates the state of the art after the K2 mission, highlighting all
known transiting planets orbiting red-giant stars.

1.1.3 TESS - An all-sky survey

Launched in April of 2018, NASA’s TESS mission (Transiting Exoplanet Survey Satel-
lite; Ricker et al. 2015) is one of the latest photometric space missions to launch and
the first to perform a (nearly) complete photometric survey of the sky with the intent
of searching for exoplanets, during a two-year period (primary mission).

TESS ’s satellite is equipped with four identical cameras with a 24×24-degree field
of view, each with four charge-coupled devices (CCD). Aligned vertically, the cameras
cover the sky in 26 segments, named sectors, with 13 in the southern hemisphere,
observed during the first year of the primary mission and the remaining 13 in the
northern hemisphere, observed the following year. Each sector is observed for a total
of 27.4 days, but due to some overlapping of the sectors on each hemisphere, some
areas of the sky, referred to as continuous viewing zones (CVZ), were observed for
up to 351 days. Figure 1.2 illustrates the sky coverage of the 4 cameras from TESS
for the 26 sectors covering the two hemispheres, including the multiple overlapping
regions, color-coded according to the expected days of observations.

For every sector, the spacecraft observed and downlinked about 20,000 targets
in two-minute cadence postage stamps, as well as full-frame images (FFIs) of the
four cameras binned to 30-min cadence. Additionally, TESS ’s extended mission has
been approved and is already in progress2, with an increased observational cadence
of 10-min for the FFIs (as well as adding a 20-second cadence observation mode for
about 1000 targets per sector). This “second round” from TESS will not only (for
the most part) double the number of available sectors of data of observed targets,
which improves the confidence of previous planet detections and allows for new ones
(Kane et al. 2021), but the shorter FFI cadence will increase the sample of targets
for which asteroseismology can be applied, improving stellar characterization as well.

2TESS Extended Mission
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Figure 1.2: Pre-launch schematic showing the sky coverage of the four cameras from
the TESS satellite on the celestial sphere during the initial two years of the mission.
Each ecliptic hemisphere is observed by 13, 27.4-day sectors. Color-coded regions
highlight different lengths of observations by TESS, due to the areas covered by
TESS cameras overlapping near the poles during different sectors. The gray region,
concentrated mostly near the ecliptic, is the region not observed by TESS. The black
dashed line around the ecliptic pole shows the expected region where the James Webb
Space Telescope (JWST ) will have continuous viewing capabilities. Figure from the
TESS MIT website.

From these existing data, up to a few hundred new planets orbiting evolved stars
are expected to be discovered (Campante et al. 2016b; Barclay et al. 2018), an esti-
mate that is highly dependent on the assumed occurrence rate.

1.2 Synergy with asteroseismology

Since most exoplanets are detected through indirect methods, their fundamental prop-
erties (such as mass and radius) are only known in relation to their host’s properties.
As such, a precise characterization of the planet is directly dependent on a precise
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characterization of its host. In this section, I briefly introduce the field of astero-
seismology, which has had a considerable impact on exoplanetary sciences in recent
years.

1.2.1 Introduction

Asteroseismology is the science that studies the internal structure of stars by inter-
preting their intrinsic global oscillations. The observed frequencies carry information
on the internal structure and dynamics of the star, and may in turn be used to place
constraints on the fundamental stellar properties.

There are two main types of oscillating stars. Classical oscillators have oscillations
which are coherently excited and intrinsically unstable. One famous example of this
class of oscillators are the Cepheid variable stars, which have a very precise corre-
lation between their pulsation period and luminosity. The other type are solar-like
oscillators, which have intrinsically stable oscillations and are stochastically driven
by near-surface convection (Aerts et al. 2010). Their name stems from the fact that
the Sun exhibits this type of oscillations.

Solar-like oscillators extend from low-mass main-sequence stars to evolved red
giants and possibly beyond (Christensen-Dalsgaard et al. 2001; Cunha et al. 2020).
Regarding the physical nature of the oscillations in these stars, they can either have
the nature of standing acoustic waves, which are referred to as p-modes or pressure
waves, or have the nature of internal gravity waves commonly referred to as g-modes
or gravity waves. With the exception of radial p-modes (characterized by an angular
degree l = 0), which travel through the entirety of the stellar interior, oscillations
can either be trapped in the outer layers of the stars, where the restoring force is
the pressure gradient (p-modes) or in the inner radiative region of the stars, where
the restoring force is buoyancy (g-modes) (see Aerts et al. 2010). As g-modes are
trapped in the central regions of the star, only p-modes can be detected in main-
sequence stars (and only with low angular degree, l ≤ 4). For evolved stars, modes of
mixed character can also exist and be observed (Beck et al. 2011). These are called
mixed modes and behave like g-modes in the stars’ inner region and like p-modes in
the envelope, thus carrying information about the stellar core (Bedding et al. 2011;
Mosser et al. 2011). Figure 1.3 shows an oscillation spectrum from a Kepler red-giant
star, highlighting the oscillation modes visible.
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Figure 1.3: Oscillation spectrum of a Kepler red-giant star. On the left, an overview
of all oscillations modes identified is shown. The radial modes (red squares; l = 0)
are equally spaced in frequency, called the large frequency separation, ∆ν. The green
triangles with extended bars, blue pentagons and yellow hexagons represent the dipole
modes (l = 1), quadruple modes (l = 2) and octuple modes (l = 3), respectively. The
spectrum is centered on the frequency of the peak of the oscillations envelope, called
the frequency of maximum oscillation, νmax. On the right, a zoom in of the left plot
is shown. The green up triangles shown are the g-mode dipole frequencies, observed
due to the mixed nature of the dipole modes. These mixed modes are equally spaced
in period, called the period spacing, ∆Π1. The magenta left and right triangles show
the rotational splittings of the dipole modes, along with the core rotational splitting
parameter, δνg. Both plots are from Davies and Miglio (2016).

1.2.2 Asteroseismic stellar characterization

Focusing solely on evolved solar-like oscillators, three global asteroseismic quantities
can be extracted from the oscillation modes, which are of great interest due to their
relation to stellar properties.

The quasi-regular frequency spacing between two adjacent radial modes of oscil-
lation is known as the large frequency separation, ∆ν, and is sensitive to the radius
of the star and proportional to the square root of its mean density, ρ̄ (Ulrich 1986),
through

∆ν ∝
√
ρ̄ ∝

√
M

R3 , (1.3)

where M and R are the stellar mass and radius, respectively.
The frequency of the peak of the oscillations envelope, known as the frequency

of maximum power, νmax, varies due to both the surface gravity, g, and effective
temperature, Teff, of the star (Kjeldsen and Bedding 1995),

νmax ∝ gT
−1/2
eff . (1.4)
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Rearranging the relations of these two quantities, both the mass and the radius of
the star can be estimated, provided the stellar effective temperature is also known,
using the following scaling relations (see Chaplin and Miglio 2013),

R

R�
'
(
νmax

νmax,�

)(
〈∆ν〉
〈∆ν〉�

)−2 (
Teff
Teff,�

)0.5

, (1.5)

M

M�
'
(
νmax

νmax,�

)3 ( 〈∆ν〉
〈∆ν〉�

)−4 (
Teff
Teff,�

)1.5

, (1.6)

where the denominator values are the solar reference values. Derived stellar properties
from these scaling relations have average uncertainties of ∼ 5% in radius and ∼ 10%
in mass for both main sequence (Silva Aguirre et al. 2012; Huber et al. 2012; Huber
et al. 2013b; Huber et al. 2017) and giant stars (Gaulme et al. 2016; Huber et al.
2017; Yu et al. 2018).

Finally, there is the period spacing, ∆Π1. Period spacing is the regular spacing
in period expected between two adjacent gravity-dominated modes. As mixed modes
have both g-mode and p-mode character, they exhibit a periodic spacing in period,
which is larger the more the mixed mode is dominated by its gravity mode. Period
spacing was first observed in a red-giant star by Beck et al. (2011). This quantity
carries information from the inner regions of the star and can be used to infer stellar
ages, together with ∆ν and νmax, helping also to differentiate between different stellar
evolutionary stages (Mosser et al. 2012b; Stello et al. 2013; Mosser et al. 2014; Vrard
et al. 2016).

As an alternative to global asteroseismic quantities, slower but more sophisticated
methods to determine stellar properties from asteroseismic data include grid-based
modeling (Stello et al. 2009; Kallinger et al. 2010a; Huber et al. 2013b; Silva Aguirre
et al. 2015), where additional asteroseismic information, such as individual modes
of oscillation, can be used to infer the stellar structure. Examples of such imple-
mentations include AIMS (Asteroseismic Inference on a Massive Scale; Rendle et al.
2019), BASTA (BAyesian STellar Algorithm; Silva Aguirre et al. 2015) and PARAM
(Rodrigues et al. 2017). With these methods, typical uncertainty values for Kepler
main sequence stars are of ∼ 1− 3% in radius, ∼ 5% in mass and ∼ 10− 15% in age
(Huber et al. 2013b; Silva Aguirre et al. 2015; Silva Aguirre et al. 2017).

Additionally, asteroseismic data can also be used to infer stellar inclinations (Hu-
ber et al. 2013a; Campante et al. 2016a), and orbital properties, such as exoplanet
eccentricities (Dawson and Johnson 2012; Sliski and Kipping 2014; Van Eylen et al.
2019).
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Figure 1.4: Predicted yield of TESS evolved hosts with detectable solar-like oscil-
lations. Data points are color-coded according to apparent magnitude (with the
Johnson−Cousins IC magnitude used as a proxy for the TESS magnitude) and their
size is proportional to the observing length. Solar-calibrated evolutionary tracks span-
ning the mass range 0.8− 2.0 M� are shown as continuous lines. The slanted dashed
line represents the red edge of the δ Scuti instability strip. Most stars are located at
the low-luminosity end of the red-giant branch, as per the focus of the work. Figure
from Campante et al. (2016b).

1.2.3 TESS asteroseismic potential

Initial results of asteroseismic studies of TESS red-giant targets have already been
published (Silva Aguirre et al. 2020; Mackereth et al. 2021). Silva Aguirre et al. (2020)
analyzed a sample of 25 bright stars (V magnitude < 7) with one or two sectors of
TESS data, quoting uncertainties for stellar radii, masses and ages of 6%, 14% and
50%, respectively. The same publication observes that these uncertainties improve
significantly with the inclusion of parallax data from Gaia DR2 (Gaia Collaboration
et al. 2018), namely, to 3%, 6% and 20%, respectively, close to values obtained for
Kepler targets.

Mackereth et al. (2021) focused on targets in the southern CVZ (more sectors of
data), but considered fainter stars on average (Gaia G magnitude < 11), evaluating
the probability of asteroseismic detections in TESS data of red-giant stars. They find
an average detection yield of ∼36% for all targets in their sample, which increases to
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Figure 1.5: Schematic illustrating the three existing theories for the origin of hot
Jupiters. Figure from Dawson and Johnson (2018).

∼50% when considering only targets with one year of data.
For asteroseismic exoplanet hosts, Campante et al. (2016b) conducted a study

to predict the yield of evolved host stars in TESS FFIs with detectable solar-like
oscillations, pointing up to 200 low-luminosity red-giant branch (LLRGB) hosts, as
illustrated in Figure 1.4. However, the authors note that this estimate was based
on a synthetic stellar population of the Galaxy with adopted occurrence rates from
Fressin et al. (2013) (for Teff > 4000 K) which do not account for evolutionary effects
in the planetary systems as the hosts evolve off the main sequence. At the same time,
first-light papers describing the asteroseismic characterization of evolved planetary
hosts using TESS data have already been published (Huber et al. 2019; Campante
et al. 2019; Nielsen et al. 2019; Ball et al. 2020; Jiang et al. 2020). Provided that
the oscillations envelope of giant stars is visible in TESS FFI 30-min cadence data,
asteroseismology of many evolved TESS targets should be possible, with estimates of
∼ 3−5×105 red giants with detectable oscillations across the whole sky (even if only
through global asteroseismic quantities; Silva Aguirre et al. 2020; Mackereth et al.
2021). TESS thus presents a great opportunity for the detailed characterization of
evolved hosts and their transiting exoplanets.

1.3 Giant planets orbiting giant stars

The formation of gas-giant planets is believed to happen either through core accretion
(Pollack et al. 1996), whereby gas from the protoplanetary disk accretes around a
previously formed rocky/ice core, or gravitational instability (Boss 1997), whereby
a planet is formed because of a direct gravitational instability in the protoplanetary
disk, in the same way that stars form from interstellar clouds.
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Also, whilst long-period giant planets, beyond the ice-line, are believed to form
in-situ, the situation is not so clear for hot Jupiters. Three different hypotheses
have been proposed in the literature to explain their origin, with varying degrees of
agreement with the two theories of formation mentioned above. The three are, in-
situ formation, whereby the hot Jupiter is thought to form close to the star (Batygin
et al. 2016; Boley et al. 2016), disk migration, whereby the planet forms further away
but migrates throughout the protoplanetary disk during stellar formation (Lin et al.
1996; Ida and Lin 2008), and high-eccentricity migration, whereby the planet forms
away from the star, and is then excited to a highly eccentric orbit which is eventually
circularized close to the star through tidal dissipation (several mechanisms have been
proposed to explain the excitation of cold Jupiters’ eccentricities; see Dawson and
Johnson (2018), and references therein). Figure 1.5 illustrates these three hypotheses.

Population studies of giant planets with respect to their own structural properties,
orbital properties or their hosts’ properties can shed light on which of these theories
may be at play. Throughout this section, I explore the current state of the art in
connection to these studies in order to motivate the goal of this thesis in finding more
of these systems. I also highlight the opportunities that open up with the exploitation
of TESS ’s population of evolved planet hosts.

1.3.1 Occurrence rate

For main-sequence host stars, the occurrence rate of giant planets, determined from
RV studies, is of around 10% (Marcy et al. 2005; Cumming et al. 2008; Mayor et al.
2011). For transit surveys, Fressin et al. (2013) measured 5%, though only for orbits
shorter than ∼400 days, which is not comparable with the periods of up to ∼10 years
considered in the above value from RVs. As for smaller planets, estimates for the
occurrence rate of planets with any mass lower or equal to Neptune’s are of the order
of 50% (Mayor et al. 2011; Petigura et al. 2018). Restricting it only to Earth-like
planets, Petigura et al. (2013) estimate an occurrence rate of ∼26 %.

With respect to hot Jupiters and still looking at main-sequence stars, RV surveys
estimate a rate of about ∼ 1− 1.5% (Marcy et al. 2005; Cumming et al. 2008; Mayor
et al. 2011; Wright et al. 2012). This value is at odds with the one found for Kepler
transiting planets, which is of about 0.4 − 0.5% (Howard et al. 2012; Fressin et al.
2013; Petigura et al. 2018), a result that has been observed as well for TESS (Zhou
et al. 2019). Hypotheses for these discrepancies have been attributed to different
metallicities between samples (Howard et al. 2012; Wright et al. 2012) or to stellar
multiplicity (Wang et al. 2015).

Going beyond the main sequence and on to evolved hosts, some RV surveys found
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occurrence rates of giant planets similar to those of main-sequence stars, i.e. of
about 10% (Johnson et al. 2007a; Wittenmyer et al. 2020). Other surveys have found
discrepant values, such as the occurrence rate of 26% found by Bowler et al. (2010), a
result that was also obtained by Wittenmyer et al. (2020), when the authors consider
the entire Pan-Pacific Planet Search (PPPS) sample in their studies. However, a
common characteristic of all studies concerning evolved hosts is that of the larger
masses of sample stars, with most targets being identified as evolved A stars. Given
the generally accepted correlation between stellar mass and giant-planet occurrence
(see Section 1.3.3), additional studies are necessary to understand the source of these
discrepancies and determine the exact occurrence rate around evolved hosts.

What is common with all RV surveys of evolved stars is the dearth of giant planets
in short orbits, which points to differences in the hot-Jupiter populations around
main-sequence and evolved stars (Johnson et al. 2010a; Jones et al. 2016). In the
meantime, transit surveys have led to the discovery of a handful of systems around
evolved stars (Huber et al. 2013a; Lillo-Box et al. 2014; Barclay et al. 2015; Quinn
et al. 2015) and to an occurrence rate study for close-in planets orbiting K2 giant
stars (Grunblatt et al. 2019), where the rate of ∼ 0.5%, matched the values found
for main-sequence stars. However, the latter study had only three confirmed planets
in its sample, highlighting the need to increase the sample of known close-in planets
orbiting evolved hosts, an opportunity presented by TESS given its vast number of
observed evolved targets.

1.3.2 Metallicity correlation

There is an established correlation between the general occurrence rate of giant plan-
ets and stellar metallicity for main-sequence stars (Gonzalez 1997; Santos et al. 2001;
Santos et al. 2004b; Fischer and Valenti 2005; Udry and Santos 2007; Sousa et al.
2011). This correlation establishes core accretion as the most likely formation mech-
anism for these planets (Boss 2001; Mordasini et al. 2012). Moving on to subgiant
stars, the trend also seems to be observed (Johnson et al. 2010a; Jofré et al. 2015;
Ghezzi et al. 2018). However, for red-giant hosts, there has been no clear consensus,
with some studies finding the same general correlation (Hekker and Meléndez 2007;
Johnson et al. 2010a; Reffert et al. 2015; Jones et al. 2016) and others finding none
(Takeda et al. 2008; Mortier et al. 2013; Maldonado et al. 2013).

Pasquini et al. (2007) try to explain this potential lack of correlation between
metallicity and giant-planet occurrence around evolved stars by suggesting that the
disk instability might be the preferential formation mechanism at work for intermediate-
mass stars, removing the expected dependency on metallicity. On the other hand,
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simulations by Mordasini et al. (2012), based on the core accretion model, showed
that stellar mass could also play a role in giant-planet formation, compensating for the
lower metallicity of these planet-hosting evolved systems, when compared to main-
sequence hosts.

As of yet, no clear consensus seems to have been reached, though TESS population
studies with asteroseismic hosts might provide some additional help, as asteroseismol-
ogy can provide robust estimates of the surface gravity, log g, lifting the degeneracy
in spectroscopic estimations of the effective temperature, Teff and metallicity, [Fe/H].
Additionally, precise and (notionally) accurate asteroseismic masses might also help
understand whether this correlation is present for all stellar masses (Santos et al.
2012).

1.3.3 Mass correlation

For stellar masses, the literature is clearer, with most results pointing to a correlation
between the host’s mass and the probability of having a giant planet, in agreement
with core accretion theories of formation. Giant stars are particularly useful for these
studies, as they encompass a range of masses not probed with the sample of known
main-sequence hosts.

Johnson et al. (2010a) found that for their sample, composed of stars ranging from
M dwarfs with masses as low as 0.2 M� up to intermediate-mass subgiants with masses
of up to 1.9 M�, there was a trend between the stellar mass and the occurrence rate of
giant planets. However, disagreements with respect to the determination of the stellar
masses of the evolved hosts and possible selection biases in the stellar sample used,
called into question this mass correlation (Lloyd 2011; Lloyd 2013; Schlaufman and
Winn 2013), for masses larger than that of the Sun. More recent works have weighed
in on the masses of the stars in the sample using asteroseismology, thus improving
the mass estimation (North et al. 2017; Stello et al. 2017; Campante et al. 2017).

More recently, Reffert et al. (2015) extended the sample of Johnson et al. (2010a)
up to 5 M�, and observed that the giant-planet occurrence rate increased with stellar
mass from 1.0 M� to 1.9 M� but then dropped rapidly for masses above 2.5 M�, with
no planets found for stars with masses above 2.7 M�. Subsequent studies obtained
similar results (Jones et al. 2016; Ghezzi et al. 2018), with Ghezzi et al. (2018), in par-
ticular, specifically addressing the issue of stellar mass determination and confirming
the validity of the correlation found by Johnson et al. (2010a).
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1.3.4 Eccentricities

Looking at main-sequence stars, the population of hot Jupiters has mostly circular
orbits, expected due to tidal interactions with its host (Hut 1981). As for warm
Jupiters orbiting main-sequence hosts, the existence of a moderately eccentric popu-
lation points to high-eccentricity migration being at least responsible for the origin
of some of these planets (Dawson and Johnson 2018).

For evolved hosts, the planet population is expected to be different compared
to that around main-sequence stars, due to dynamical interactions driven by stel-
lar evolution (Veras 2016). Simulations have shown that the increased stellar radii
can increase the angular momentum exchange between the planet and its host star,
causing stellar tides to start to dominate over planetary tides and resulting in a tran-
sient population of moderately eccentric close-in giant planets (Villaver et al. 2014),
non-existent around main-sequence stars. This population has been observed already
(Grunblatt et al. 2018), albeit with a small sample of planets, a case where TESS
once again can help.

1.3.5 Radius inflation

A puzzling question since the discovery of the very first hot Jupiters has been their
radii, which was found to be larger than what was postulated from evolutionary
models (Bodenheimer et al. 2001; Guillot and Showman 2002). This increased plan-
etary radius has been shown to be directly correlated with the incident flux from the
planet’s host star (Laughlin et al. 2011; Weiss et al. 2013; Lopez and Fortney 2016;
Thorngren and Fortney 2018), as shown in Figure 1.6. Numerous theories have been
presented to explain these inflated radii, which can be grouped into two different sets.

The first set proposes that the radii of these gas-giant planets, which are larger
during formation and contract as the planet cools off afterwards, are kept inflated due
to delayed cooling of the planet’s interior. Existing mechanisms proposed to cause
this delay include enhanced atmospheric opacity (Burrows et al. 2007) and reduction
of the heat transport in planetary interiors (Chabrier and Baraffe 2007). A common
counter-argument to both this mechanism and to delayed cooling of planetary interiors
in general, is the difficulty in explaining the observed correlation of radius inflation
with stellar irradiation.

The second set of theories suggests that the inflation is due to internal heating
mechanisms that deposit heat into the planetary interior, either offsetting the cooling
from formation or causing even a re-inflation of the radius. Within this set, multiple
hypotheses have been proposed, which can be separated into two distinct groups. The

15



Figure 1.6: Radius of known giant exoplanets shown as a function of incident stellar
flux. Masses from the planets are color-coded, going from 0.1 to 13 MJ. The red
dashed line shows the evolutionary model for a Jupiter-mass planet with no additional
inflation effects considered, at 4.5 Gyr. The vertical dashed line shows the flux cutoff
below which no radius inflation is detected. Figure from Fortney et al. (2021)

first group postulates that the interior heating is directly related to tidal dissipation,
either through high-eccentricity tidal migration (Bodenheimer et al. 2001) or through
thermal tides (Arras and Socrates 2010; Socrates 2013). The second group posits
that heat from stellar irradiation is directly deposited deep in the planet’s interior,
with different mechanisms suggested, namely, atmospheric circulation (Guillot and
Showman 2002), large scale atmospheric vertical mixing (Youdin and Mitchell 2010;
Tremblin et al. 2017) and ohmic dissipation (Batygin and Stevenson 2010; Ginzburg
and Sari 2016).

Whilst no single mechanism has managed to explain all existing observations, with
some recent results even suggesting that more than one mechanism might be necessary
to explain the available observations (Sarkis et al. 2021), there are some observational
setups that can help filter out existing hypotheses. Specifically, Lopez and Fortney
(2016) argued that post-main-sequence hosts would be ideal candidates to evaluate the
potential re-inflation of hot Jupiters, which would point to mechanisms that deposit
stellar irradiation in the planet’s interior being at play. Evolved systems are older
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than their main-sequence counterparts, and have had longer time for their close-in
giant planets to cool down from formation. Additionally, stellar irradiation increases
significantly as the host reaches the subgiant and giant branch. Characterization
of close-in giant planets orbiting evolved hosts should then shed light on whether
re-inflation is at work or not in these planets. Despite the general lack of known
close-in transiting planets orbiting evolved hosts, initial studies have been done with
the few that have been observed (Grunblatt et al. 2016; Grunblatt et al. 2017), with
results pointing to re-inflation being the most likely explanation for their inflated radii.
Nonetheless, these studies were carried out based only on two planets, highlighting the
need for additional systems to be observed and characterized, so that these theories
can be re-evaluated with larger samples.

A more detailed and extensive description of the field of giant-planet inflation,
along with multiple additional references can be found in Spiegel and Burrows (2013),
Baraffe et al. (2014), and Dawson and Johnson (2018).

1.4 Objectives and structure

The overall goal of this thesis is to expand on our understanding of the processes that
govern the formation and evolution of planetary systems, focusing on the study of
giant planets orbiting giant stars. This in turn can be pursued by trying to answer
the many open-questions introduced in Section 1.3.

In particular, I wanted to focus on close-in giant planets (hot Jupiters) orbiting
red-giant stars. The origin behind planetary radius inflation and its efficiency are
still not clearly understood, and the precise characterization of inflated giant planets
orbiting evolved stars can provide some unique insights (Lopez and Fortney 2016;
Grunblatt et al. 2017). At the same time, as few of these evolved systems with short
orbital period are known to date, the discovery of additional systems could lead to
better constraints on their occurrence rate (Grunblatt et al. 2019).

To tackle these questions, I needed to increase the existing sample of known close-
in giant exoplanets orbiting red-giant hosts. Moreover, given the impact of stellar
signals in transiting light curves of evolved stars, a topic which we explore in Sec-
tion 2.2, I also needed to develop methods to improve the characterization of these
systems.

The TESS mission provided a clear opportunity for such an endeavour. TESS
FFIs observed (almost) the entire sky for a minimum of ∼27.4 days (one sector), a
length of observations which is sufficient when looking for hot Jupiters. Additionally,
TESS asteroseismology is possible, even for targets with one sector of data (see Sec-
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tion 1.2.3), which can improve the characterization of the host star, indispensable to
determining accurate planetary properties.

To that end, I defined three major objectives. The first objective was to develop
and implement a method to characterize a planetary transit together with other
stellar signals, all directly in the time domain. The method should include physically
motivated components to capture the most significant and expected stellar signals in
the photometric light curves.

The second objective was to develop a pipeline, using third-party open-source
software whenever possible, for the extraction and correction of light curves from the
TESS FFIs, and the subsequent search and validation of planetary transits.

Finally, I wanted to perform a systematic search in the TESS FFIs for close-
in transiting exoplanets orbiting red-giant stars. This would entail the statistical
classification of false-positive signals, as well as the identification of a list of potential
physical transit/eclipse signals. Additional validation of the physical signals would
then further distinguish planetary transits from other (non-planetary) astrophysical
signals. All physical signals identified as planetary would then be ranked and classified
as candidate planetary transits.

Any opportunities to obtain RV follow-up observations of candidate planets should
also be pursued for confirmation. All highly ranked planet candidates, whether con-
firmed or not, should then be modeled using the characterization tool developed.

This thesis is structured as follows. Chapter 2 introduces the signals present in
transiting light curves, starting with planetary transits and models to describe them,
and also highlighting the accompanying stellar signals, often filtered out or ignored in
planetary characterization. Chapter 3 then follows with the description and testing
of the method developed for planetary transit characterization, which models both
transits and stellar signals simultaneously in the time domain. Chapter 4 details
the development of the pipeline for the light curve extraction and transit search in
the TESS FFIs, describing each of the pipeline’s multiple components. Chapter 5
then presents the methodology and results of the TESS FFI search, introducing
the target list selected from the TESS southern hemisphere and then discussing the
data processing and exploitation done that led to the discovery of three new planet
candidates. Finally, in Chapter 6 I summarize the major results of this thesis and
discuss future opportunities in the field of giants orbiting giants.
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Chapter 2

Transit light curves

Given the focus of the thesis on photometric data from TESS, it is essential to un-
derstand some of the signals that are expected to be observed in a photometric light
curve, in particular of red-giant stars. In that respect, the first section of this chap-
ter highlights the relevant physics at play in planetary transits, concluding with a
description of the photometric signal observed for a transiting exoplanet.

Besides the signal from the planetary transit, the presence of a companion, in par-
ticular a massive one, can give rise to other deterministic out-of-transit variations in
the light curve of the star. In the context of characterizing the light curve of Kepler-
91 b, a close-in giant planet orbiting a red-giant star, Lillo-Box et al. (2014) mention
three main causes for such variations when considering closely packed planetary sys-
tems. Namely, light from the planet (emitted or reflected), ellipsoidal variations (or
tidal distortions) induced by the planet on the star and Doppler beaming due to the
reflex motion of the star induced by the presence of a massive companion. In my
case, I do not attempt to characterize these variations, so the section details only the
description of a planetary transit signal.

The second section discusses the remaining signals present in the light curve, all of
stellar origin, which are stochastic in nature and often filtered out or ignored in plan-
etary studies. These play a leading role in the improvements to the characterization
of transiting light curves discussed in this thesis.

2.1 Planetary transits
In this section, I describe the observed signal that a transiting planet produces during
an orbit around its host. I start by introducing the equations necessary to describe
the elliptical motion of a body around the center of mass of a two-body system.
Interpreting this motion from the perspective of a planet relative to its host star, I then
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obtain the expression that represents a planet’s orbit in three dimensions. Considering
then the case for a transiting planet, I present the equations that outline its motion as
it crosses the stellar disk. Finally, I arrive at the signal that a transiting planet would
cause on the observed light curve of its host star. A complete derivation of planetary
orbits, as well as additional insights, can be found in the work of Murray and Correia
(2010). For planetary transits, the work of Winn (2010) provides additional material.

2.1.1 Orbits

Under Newton’s law of universal gravitation, an orbiting system with two bodies or-
bits the center of mass of the system, called the barycenter. For a star-planet system,
this barycenter is often close to the center of the star, given its disproportionately
larger mass in comparison to the planet. Considering now the motion of a planet
relative to its host, the orbit follows a closed ellipse with the star at one of the foci,
and the distance r from the star to any point on the orbit defined by its angular
distance, θ, is given by

r = a(1− e2)
1 + e cos(θ −$) , (2.1)

where e is the orbit’s eccentricity, constrained to values of 0 ≤ e < 1 and a is its
semi-major axis, related to the semi-minor axis, b, through

b2 = a2(1− e2). (2.2)

The angle θ, called the true longitude, equates to the minimum and maximum of
Equation (2.1) at θ = $ and θ = $ + π, respectively. These points in the ellipse
are referred to as the periapsis and apoapsis, respectively. $ is called the longitude
of periapsis as it represents the angular location of the periapsis of the ellipse with
respect to a reference direction. For the special case of e = 0, the expression simplifies
to that of a circular orbit with r = a and where $ is undefined since all points in
the orbit are now equidistant from the focus. Equation (2.1) can also be defined in
reference to the point of periapsis by introducing the true anomaly angle, f = θ−$,
with which we can rewrite Equation (2.1) so that the argument of the equation is the
angular location with respect to the periapsis,

r = a(1− e2)
1 + e cos f . (2.3)

Figure 2.1 illustrates the geometry of such an elliptical orbit.
Notice that, despite describing an elliptical orbit, Equation (2.3) does not depend
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Figure 2.1: Schematic of an elliptical orbit in two dimensions, with the star at one
of the foci. The orbit has semi-major axis a, semi-minor axis b, eccentricity e and
longitude of periapsis $. Figure from Murray and Correia (2010).

on time, t, but on an angular quantity, the true anomaly f . Additional expressions
are required to express the position of the planet with respect to time. To do so,
observe that, although throughout the orbit the planet does not move at a constant
angular rate, it always covers an angular distance of 2π over its orbital period, P ,
and so we define the mean motion as

n = 2π
P
, (2.4)

from which we then define the mean anomaly, M , at time t, as

M = n(t− tper), (2.5)

where tper is the time of periapsis passage. Finally, we introduce the eccentric anomaly,
E, with which we can rewrite Equation (2.3) as

r = a(1− e cosE), (2.6)

and which can be related to M through Kepler’s equation,

M = E − e sinE. (2.7)
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Figure 2.2: Schematic of an elliptical orbit in three dimensions. Extending the orbit’s
two-dimensional representation to three dimensions requires three additional parame-
ters: the orbital inclination i, the longitude of the ascending node Ω and the argument
of periapsis ω. Figure from Murray and Correia (2010).

The location of the orbiting planet in the elliptical plane can now be fully de-
scribed, given the parameters a, e, P , and tper. For any time, t, we:

• Find M using Equations (2.5 and 2.4),
• Find E by solving Kepler’s equation (Equation 2.7),
• Find r using Equation (2.6),
• Find f using Equation (2.3).

To now add a third dimension to our representation of the orbit, we first define
a reference plane parallel to the cartesian x and y-axis, as illustrated in Figure 2.2.
This reference plane is oriented so as to match the observer’s plane of the sky and
perpendicular to the observer’s line of sight, which we position in the positive direction
of the z-axis. In this scheme, the line of nodes is the line that intersects both the
reference plane and the orbital plane. Of the two points of intersection between the
line of nodes and the orbit-line, we call the one where the orbit crosses the reference
plane from below to above the ascending node.

From this configuration we can now define three angular quantities necessary to
describe the orbit in three dimensions. First we define the orbital inclination, i, which
measures the angle from the the reference plane to the orbital plane. For i = 0◦, the
observer sees the orbit face-on with the orbital plane perpendicular to the line of
sight, whilst for i = 90◦, the orbit is edge-on, with the orbital plane parallel to the

22



observer’s line of sight. Then we define the longitude of the ascending node, Ω, as the
angle measured from the reference line (the x-axis) to the ascending node. Finally, we
define the argument of periapsis, ω, as the angle measured from the ascending node
to the periapsis of the orbit, measured in the orbital plane and following the orbit’s
direction of motion. For circular orbits this angle is undefined, similarly to $, since
there is no periapsis. Using these three angular quantities, we now map our previous
orbital plane positions, described by r and f , to the three cartesian coordinate axes
x, y and z, through the expressions

x = r (cos Ω cos(ω + f)− sin Ω sin(ω + f) cos i) , (2.8)
y = r (sin Ω cos(ω + f) + cos Ω sin(ω + f) cos i) , (2.9)
z = r sin(ω + f) sin i. (2.10)

Adding it all together, we get a set of all orbital parameters required to describe
the position of a planet in an elliptical orbit in three dimensions: the semi-major
axis a, the eccentricity e, the orbital period P , the time of periapsis passage tper, the
inclination i, the longitude of the ascending node Ω, and the argument of periapsis
ω.

2.1.2 Transits

An eclipse is the obscuration of a celestial body by another. When the bodies have
vastly different sizes, i.e., for the case of a planet and its host star, then the passage
of the smaller body in front of the larger one is called a transit and the passage of
the smaller body behind the larger one is called an occultation.

Since we are interested in planetary transits specifically, we consider a planet
of mass Mp and radius Rp orbiting a star of mass M? and radius R?. Figure 2.3
illustrates this scenario and the flux observed throughout time due to the variations
from the concealments.

To derive an equation to describe the flux variations, we first reorient the reference
plane so that the line of nodes lines up with the x-axis, with the descending node in
positive x, giving Ω = 180◦ (see Figure 2.2). This simplifies Equations (2.8−2.10) to

x = −r cos(ω + f), (2.11)
y = −r sin(ω + f) cos i, (2.12)
z = r sin(ω + f) sin i. (2.13)

Figure 2.4 illustrates the geometry of the orbit in this new orientation. In this con-
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Figure 2.3: Schematic of transits and occultations. The flux observed contains both
contributions from the star as well as reflected light from the planet. The reduction
in flux is greater during a transit as the planet covers a portion of the stellar surface.
In the occultation, the star covers the contribution from the planet’s reflected light,
causing another, less deep, reduction in flux observed. Figure from Winn (2010).

figuration, the sky-projected distance between the centers of the star and the planet
is d =

√
x2 + y2. Using Equations (2.11) and (2.12),

d = a(1− e2)
1 + e cos f

√
1− sin2(ω + f) sin2 i. (2.14)

From Equation (2.14) and Figure 2.4, it is clear that both eclipses happen when d is
at its minimum. For an estimate of this minimum we follow the approximations from
Winn (2010) where the times of eclipses, defined where x = 0, and shown in terms of
the true anomaly, f , are

ftra = π

2 − ω, focc = −π2 − ω, (2.15)

where “tra” refers to the transits and “occ” to the occultations. This approximation
is valid for most orbits, failing only for very eccentric orbits and close orbits with
grazing eclipses (when the bodies never cross completely in front of the other one).

The impact parameter, b (not to be confused with the ellipse’s semi-minor axis),
is the sky-projected distance between the bodies when x = 0, usually represented in
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Figure 2.4: Illustration of a transit viewed (almost) edge-on, with the planet orbit
parallel to the x-axis, going from negative to positive values during a transit. The
impact parameter b shows the distance between the center of the planet and the
center of the star, which is aligned with the center of the coordinate system. The
duration of the transit is τtra = tIV − tI, whilst the duration of ingress and egress are
τin = tII − tI and τeg = tIV − tIII, respectively. Figure from Winn (2010).

units of stellar radius:

btra = a cos i
R?

(
1− e2

1 + e sinω

)
, (2.16)

bocc = a cos i
R?

(
1− e2

1− e sinω

)
. (2.17)

Figure 2.4 also shows four relevant times during a transit (tI-IV). The duration of
the transit, τtra lasts from tI to tIV. From tI to tII is the ingress of the transit, starting
from the first contact between the disks of the planet and the star and ending at
the time when the planet disk is completely within the stellar disk. On the opposite
side, we have the egress of the transit, from tIII to tIV, starting when the planetary
disk touches the opposite stellar limb and ending when the disks stop overlapping
completely.
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Re-introducing Equation (1.2),

∆F ≡ F

F0
∝
(
RP

R?

)2
, (2.18)

we have that the normalized reduction in flux during a transit is proportional to
the ratio between the radii of the planet and star. This expression works under the
assumption that both the planet and the star are spheres, producing sky-projected
circular disks, which we assume also for the model.

To determine the reduction in flux at any point during the orbit of the planet,
we define the sky-projected distance between the centers of the star and the planet,
scaled by the stellar radius, z ≡ d/R?, and the ratio of the radii, which we define as
p ≡ Rp/R?. Assuming a uniform stellar flux, F0, and assuming the planet is a dark
sphere which does not reflect light, then the normalized transit flux observed in the
light curve during the planet’s orbit depends only on the fraction of the stellar disk
covered by the planet’s disk at any point in the orbit, given by a function λ which
depends on z and p (see Equation 1 of Mandel and Agol (2002) for the complete
expression),

F

F0
= 1− λ(z, p). (2.19)

Leaving the assumption of uniform stellar flux and considering now the effects
of stellar limb darkening, we have that the stellar brightness has a higher central
observed value which falls radially to the stellar edge (the limb). This dimming de-
pends on the angle between the stellar surface normal and the observer, θ, usually
parametrized through its cosine, µ = cos θ, which essentially represents a radial co-
ordinate in the stellar disk. Multiple limb-darkening laws exist to describe the falloff
in brightness. Notable mentions are the historical linear law (Milne 1921; Grygar
et al. 1972; Claret and Gimenez 1990), the quadratic law (Claret and Gimenez 1990;
Mandel and Agol 2002), the square-root law (Diaz-Cordoves and Gimenez 1992), the
non-linear law (Claret 2000) and the "power-2" law (Morello et al. 2017). For our
model we adopt a quadratic limb-darkening law, widely used in the literature

I(µ)
I0

= 1− u1(1− µ)u2(1− µ)2, (2.20)

where I(µ) is the stellar surface brightness at µ, I0 is the surface brightness at the
center of the stellar disk and u1 and u2 are the quadratic limb-darkening coefficients,
which follow u1 + u2 < 1. Using this limb-darkening model, the determination of the
normalized stellar flux during the planet’s orbit is now more complex and, during
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the transit, requires the integration of the surface brightness I(µ) over the area of
the stellar disk obscured by the planet. The complete analytical expression for the
resulting light curve is far too lengthy and we refer to section 4 of Mandel and Agol
(2002) for details. Here we denote it simply as a function of its four parameters: z,
p, u1 and u2,

F

F0
= f (z, p, u1, u2) . (2.21)

With a chosen limb-darkening model for the stellar flux, we now have all the
necessary ingredients to describe the light curve of a transiting planet. From Equa-
tion (2.21), we have 4 parameters that need to be defined. However, the normalized
distance between centers, z is calculated with d from Equation (2.14), which is deter-
mined by the orbit of the planet, and consequently depends on all its parameters. All
in all, 9 parameters have to be defined to fully characterize the planet’s light curve:

• a/R?, the semi-major axis in stellar radius units (so that z is determined instead
of d using Equation (2.14))

• e, the eccentricity
• P , the orbital period
• tper, the time of periapsis passage or, alternatively, t0, the time of inferior con-

junction (or transit epoch)
• i, the orbital inclination (though for transiting systems this is almost always
∼ 90◦)

• ω, the argument of periapsis
• p, the ratio between the planetary and stellar radii
• u1 and u2, the coefficients for a quadratic limb-darkening model

Notice how Ω is no longer a parameter, as we define our frame of reference for transits
so that Ω = 180◦, as mentioned earlier.

For any time, t, we then calculate the transiting planet light curve flux by:

• Finding M using Equations (2.5 and 2.4),
• Finding E by solving Kepler’s equation (Equation 2.7),
• Finding r using Equation (2.6),
• Finding f using Equation (2.3),
• Finding z using Equations (2.11, 2.12 and 2.14), with a/R? instead of a,
• Finding F

F0
using Equation (2.21).
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2.2 Stellar signals

A transit signal is not the only signal present in photometric transit time series. The
surface of the star cannot be resolved and so, any variation in the surface’s integrated
flux is also going to be present in the flux measurements. These surface flux varia-
tions are caused by different physical phenomena in a star and their timescales and
amplitudes vary not only between different spectral types but also between different
stages of stellar evolution.

In the context of photometric time series observations of solar-like stars, signals
corresponding to physical processes in stars have been identified in the power spec-
trum of solar-like stars. The most significant ones are the different scales of gran-
ulation (Harvey 1985; Aigrain et al. 2004; Michel et al. 2008; Mathur et al. 2011),
solar-like oscillations (Kjeldsen et al. 1995; Kallinger et al. 2010b; Bedding et al. 2010),
signals from active regions (Harvey 1985; Aigrain et al. 2004; Corsaro et al. 2015)
and possibly faculae (Karoff 2012; Karoff et al. 2013). These are stochastic processes,
with no deterministic models to describe them and so, their characterization has to
be carried out through their statistical properties, i.e., their characteristic timescales
and amplitudes, which has historically been done by modeling their contributions in
the power spectrum of the observed light curve.

Figure 2.5 shows a representative power spectrum of a LLRGB star, highlighting
the most important processes visible in the power spectrum of such a star and il-
lustrating their typical timescales and amplitudes. The typical timescales for transit
durations and planet orbits are also added for a comparison with the stellar signals.
Unlike their main-sequence counterparts, evolved hosts also have oscillations on the
timescales of the transit durations of close-in Jupiter-sized planets, along with the
mesogranulation and granulation (Mathur et al. 2011). This makes the stellar signals
harder to filter out from the light curve, due to the risk of removing some of the
transit signal (Carter and Winn 2009).

It is important to note that these power spectrum models are empirical models
guided by theoretical predictions and statistical observations of each phenomenon,
and found to fit the data adequately, with models evolving and becoming more so-
phisticated over time. Below, I describe the models for both the granulation and the
solar-like oscillations.

2.2.1 Granulation

Granulation is the irregular cellular pattern at the surface of a star caused by the
turbulent convection, where the granules evolve on a wide range of timescales and
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Figure 2.5: Illustrative example of the power spectrum of a low-luminosity red-giant
branch star. Colored lines highlight different stellar signals present in the data. The
blue lines show the signals of the granulation, mesogranulation and active regions,
according to line style, as per the legend. The red dashed line shows the oscillations
envelope signal. The gray dotted line shows the white noise signal expected for
a Kepler star. The black solid line denotes the sum of all previous components
and is representative of the effective signal seen when computing the power spectral
density of the star’s light curve. Shaded regions highlight the characteristic timescales
associated with the planet’s orbit and transit durations (i.e. relevant to this thesis),
in orange and green respectively. Notice how the mesogranulation, granulation and
oscillations all overlap with the timescales of the transit durations, which, coupled
with the high amplitudes of these signals, makes it difficult to filter them out when
characterizing a transit.

amplitudes (Harvey 1985; Aigrain et al. 2004; Mathur et al. 2011). Due to this
wide range, granulation is usually modeled as multiple processes, with Harvey (1985)
identifying three different signals in the Sun, which he named granulation (sharing
the same name as the overall process), mesogranulation and supergranulation, all of
which were modeled in the power spectrum as a Lorentzian function:

P (ν) = 4a2τ

1 + (2πντ)2 , (2.22)

where the power of the process P at frequency ν depends on the rms brightness
fluctuation, a, and the characteristic timescale, τ , of the process. Additionally, Harvey
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(1985) also found the same model to be accurate at modeling the active regions of
the star (related with magnetic activity), characterized by longer timescales than the
granulation.

Later works found that a different exponent in the denominator of Equation (2.22)
was more appropriate in modeling the flux variations caused by the granulation and
the stellar activity both in the Sun (Michel et al. 2009) and in evolved stars (Kallinger
et al. 2010b). In my work, I follow an expression commonly cited in the literature
and adopted by both Kallinger et al. (2014) and Corsaro et al. (2015),

P (ν) = 2
√

2
π

a2/b

(ν/b)4 + 1
, (2.23)

where the power of the process again depends on the characteristic amplitude, a, and
a characteristic frequency, b, defined as b = (2πτ)−1. Notice the new exponent in the
denominator, which is now 4.

In the context of evolved stars specifically, Kallinger et al. (2014) explored the
number of background models required to best characterize the power spectrum of
long-cadence Kepler time series, concluding that three components with the same
functional form as Equation (2.23) are necessary, constraining the properties of gran-
ulation, mesogranulation and active regions, respectively. The authors also mention
that one single granulation component, instead of two, is sufficient in cases where the
instrumental white noise dominates the background or is not negligible. These signals
are depicted in Figure 2.5 by the three blue lines with different styles (see legend).

2.2.2 Solar-like oscillations

As for solar-like oscillations (introduced in Section 1.2.1), if the oscillation modes can
be identified individually, they are usually modeled as Lorentzian functions (Kallinger
et al. 2010b). For the purpose of describing the background signal coming from a star,
or when there are no enough data to resolve the oscillation modes individually, the
power of the entire envelope of solar-like oscillations is commonly approximated with
a Gaussian function following

P (ν) = Pg exp
(
−(ν − νmax)2

2σ2

)
, (2.24)

which is centered on the frequency of maximum power, νmax, and has a maximum
power of Pg with a width of σ. This frequency of maximum power, whilst not pro-
viding the same amount of information as the individual modes, still conveys global

30



asteroseismic information on the star, closely related to the star’s physical properties
(Kjeldsen and Bedding 1995). This signal is depicted in Figure 2.5 by the red dashed
line.

2.2.3 Impact on transit photometry

Unfortunately, all these statistical models that describe their respective physical pro-
cesses cannot be easily translated into the time domain, so as to separate their con-
tribution from the transiting signal and allow the planet characterization to not be
hindered by the stellar signals present. For main-sequence stars, since the timescales
of most of these signals do not overlap with the duration of transits of close-in giant
planets, the issue can be mitigated by binning the time series observations such that
the stellar signals are filtered out. For evolved stars the situation is less favorable, as
the timescales of granulation and oscillations are of the same order of magnitude as
the transit durations of those planets, which rules out averaging over the observations.

The solution is then to find a method of characterizing these same power spectrum
models in the time series, that is, to model non-parametric processes characterized
by their statistical properties, directly in time domain. One such method is Gaussian
process regression, as we will see in the next chapter.
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Chapter 3

Transiting system characterization

3.1 Gaussian processes

Rasmussen and Williams (2006), the often cited source on Gaussian processes, define
them as a “collection of random variables, any finite number of which have a joint
Gaussian distribution”. To better understand this definition, we start by looking at
the univariate Gaussian distribution of a random variable x,

x ∼ N
(
µ, σ2

)
, (3.1)

with mean µ and variance σ2, and probability density given by

f(x) = 1
σ
√

2π
exp

[
−1

2

(
x− µ
σ

)]
. (3.2)

By increasing the number of variables to an arbitrary number n, i.e., x = (x1, . . . , xn)
is now our n-dimensional input vector of random variables, and admitting correlations
between them, we get a multivariate joint Gaussian distribution

x ∼ N (µ,Σ) , (3.3)

with n-dimensional mean vector µ and n×n covariance matrix Σ, where each matrix
entry expresses the covariance between pairs of variables (xi, xj). The probability
density of this distribution is then given by

f(x) = 1√
(2π)n|Σ|

exp
[
−1

2(x− µ)TΣ−1(x− µ)
]
. (3.4)

If we now imagine expanding our input space x to infinity, then our Gaussian
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distribution would have to be defined for each possible random variable x, a mean
value µ and a covariance value between variable x and every other variable x′. We do
this by defining a mean function m(x) and a covariance function k(x, x′), and defining
a Gaussian process (GP) as

f(x) ∼ GP (m(x), k(x,x′)) , (3.5)

which can be interpreted as a distribution over functions of x, constrained on the
properties imposed by its mean and covariance functions. To determine the covariance
for any point x would require us to determine its covariance with an infinite number of
other points x′, which is not feasible. However, since any finite collection of variables
from this infinite distribution is a joint Gaussian distribution itself and its properties
are consistent with all infinitely remaining variables in the Gaussian process, whether
they are taken into consideration or not, Gaussian processes can be used to predict
the distribution of functions for any finite set of variables in our input space x,
by considering the joint Gaussian distribution of only the set of variables we are
interested in and ignoring all others. Additionally, GPs allow us to further constrain
this distribution of functions by a given set of observations D = (xi, yi), with the
resulting distribution of functions being conditioned by these observed variables.

To illustrate this, Figure 3.1 shows two GP distributions with mean zero and a
squared exponential covariance (described in Section 3.1.1) for a set of equidistant
points in x between 0 and 10. On the left, the mean and two sigma interval of the joint
Gaussian distribution is shown for all points of x along with 3 samples drawn from
that same distribution. On the right, a visual representation of the covariance matrix
is shown for that same Gaussian distribution, with darker blue regions highlighting
larger correlations between pairs of points. In the top plot, the distribution follows
only the properties of the mean and covariance functions, whilst on the bottom,
additional constraints are introduced in the form of observed data, which conditions
the GP distribution, and its mean and covariance functions, to only consider models
that include those data points.

Interpreting the distributions in Figure 3.1 in a Bayesian context, we would say
that the GP distribution on the top defines a prior distribution over functions that
follow the properties defined by its mean and covariance functions, such as smoothness
and periodicity, without any additional constraints. By adding observed data, this
distribution is then conditioned to those observations, resulting in the new posterior
distribution over functions on the bottom, where only the functions that include the
observed data points are considered.
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Figure 3.1: Two Gaussian process distributions and respective covariance matrices for
100 points in x between 0 and 10. On the left, the black solid line and gray shaded
region denote the mean µ and 2-σ of the distributions, respectively. Overlapped are
also 3 samples drawn from that same distribution. On the right, the covariance ma-
trices generated by the GP’s covariance function are shown for all possible pairs of
points, highlighting the correlations between pairs (where bluer color corresponds to
higher correlation). Above, the plots show a GP prior distribution with no constraints
imposed from observed data and where the samples follow only the properties im-
posed by the mean and covariance functions of the GP. Below, three observations
are now introduced, constraining the possible correlations between points as seen in
the covariance matrix, and consequently constraining the GP distribution and the
samples drawn from it.
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3.1.1 Kernels

Defining the properties of a Gaussian process means defining its mean and covariance
functions. Here we focus exclusively in exploring covariance functions, often referred
to as kernels, which control properties of functions such as its smoothness.

Kernels are functions following the form k(x, x′) and the only requirement for
a function to be considered a covariance function is that their resulting covariance
matrices are positive semidefinite. Additionally, kernels themselves also depend on
one or more parameters. These define general properties of the kernel itself, such as its
characteristic length-scale, amplitude or period, and modifying them can further alter
the characteristics of the covariance between variables. These kernel parameters are
often referred to as hyper-parameters and we represent their vector by the subscript
α.

Some common kernels in the general Gaussian process literature include:

• diagonal kernel

kα(x, x′) = σ2δxx′ , (3.6)

with α = {σ2} and where the Kronecker delta δxx′ evaluates to unity when x = x′ and
is null for all other combination pairs. This kernel attributes the value σ2, associated
with the variance, to all pairs of points in the covariance matrix diagonal, and 0
everywhere else. Since this kernel does not consider any covariance between points,
it is representative of white noise. Its covariance matrix is shown in Figure 3.2a.

• squared exponential kernel (SE kernel)

kα(x, x′) = a exp
(
−|x− x

′|2

2l2

)
, (3.7)

with α = {a, l}. This kernel establishes a correlation between variables that is
stronger the closer they are in input space x, scaled by a characteristic amplitude
a and that decays exponentially for farther away variables, following a characteristic
length-scale l. Its covariance matrix is shown in Figure 3.2b.

• periodic kernel

kα(x, x′) = a exp
[
− 2
l2

sin2
(
π
|x− x′|

p

)]
, (3.8)

with α = {a, l, p}. This kernel defines a periodic correlation stronger between vari-
ables distanced by multiples of period p, scaled by a characteristic amplitude a and
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(a) Diagonal kernel (Eq. 3.6)

0 2 4 6 8 10
x

0

2

4

6

8

10

x
′

(b) Squared Exponential kernel (Eq. 3.7)
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(c) Periodic kernel (Eq. 3.8)

0 2 4 6 8 10
x

0

2

4

6

8

10

x
′

Figure 3.2: Covariance matrices for the kernel examples listed in Section 3.1.1, for
a set of equidistant variables in x between 0 and 10. Correlation between variables
increases from white (lowest) to dark blue (highest).
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(a) a = 1.0, l = 1.0
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Figure 3.3: Impact of different characteristic length-scale hyper-parameters l on the
properties of functions sampled from a GP distribution with a squared exponential
kernel. The black solid line and gray shaded region denote the mean µ and 2-σ region
of the distribution, respectively. The values of the parameters used for the kernel
are shown in each of the subcaptions. Notice how, despite the GP distribution being
seemingly the same, the 3 samples, shown as blue dashed lines, follow the varying
length-scale.

that decays following a characteristic length-scale l. Its covariance matrix is shown
in Figure 3.2c.

To demonstrate the impact that modifying the kernel hyper-parameters can have
on the properties of the functions represented in the GP distribution, Figure 3.3 shows
the effect of varying the characteristic length-scale l of the squared exponential kernel
(Eq. 3.7) on the GP prior distribution from the top-left plot of Figure 3.1 and its
samples.

Finally, since both sums and products of kernels also define valid kernels, all these
examples and any other covariance functions that fulfill the positive semidefinite prop-
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erty can be combined to create more elaborate models, broadening the possibilities
considerably.

3.1.2 Estimating hyper-parameters

Earlier in this section we introduced the applicability of GPs to the prediction of
unknown data given the definition of a mean and covariance functions and their
respective parameters as well as a set of n observations D = (xi, yi). However, for
our use case, which is the characterization of stellar signals, we are more interested
in estimating the mean and kernel parameters themselves, as those are the unknown
quantities that describe the variations in flux in the time series. To do so, we interpret
now the problem as estimating what is the probability for a set of mean function
parameters θ and kernel hyper-parameters α given the set of observations D. In
Bayesian notation this would be

p(α,θ|y,x) = p(y|x,α,θ)p(α,θ)
p(y|x) , (3.9)

where the posterior probability p(α,θ|y,x) for a set of parameters is proportional to
the likelihood p(y|x,α,θ) that those parameters adequately explain the dataset mul-
tiplied by the prior probability for the parameters, p(α,θ), which contains our prior
knowledge for each of the parameters without taking into account any data from the
dataset. The denominator p(y|x) is the marginal likelihood or model evidence, and
represents the cumulative likelihood for all combinations of values of the parameters
α and θ considered.

The expression to evaluate the likelihood function is just the probability density
function for the n-dimensional joint Gaussian distribution, given by Equation (3.4).
This likelihood is often presented in the literature in its log-form, which is more easily
calculated computationally:

log p(y|x,α,θ) = −1
2(y − µ)TΣ−1(y − µ)− 1

2 log (|Σ|)− n

2 log (2π) , (3.10)

where µ is the mean vector and Σ is the covariance matrix. The mean vector is
obtained from the GP mean function evaluated at points x and depends on the
parameters θ. The covariance matrix is obtained from the kernel function evaluated
for each pair of points (x,x′) and depends on the set of hyper-parameters α. |Σ| is
the covariance matrix’s determinant.

To estimate the probability distributions of each of the parameters in the model,
we need to evaluate the posterior probability of Equation (3.9) and marginalize over
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each parameter. Practically, calculating the posterior is often not possible analyti-
cally and numerically calculating the evidence (denominator) is usually too expensive
computationally. An alternative approximation is to maximize the numerator, i.e.
maximize the likelihood function (Eq. 3.10) weighted by the parameter priors. This
approach is known as type II maximum likelihood (ML-II; Berger 1985; Rasmussen
and Williams 2006) and is the one used in my work.

3.2 Modeling stellar signals in the time domain

The application of GPs to the characterization of stellar signals has already seen some
developments in recent years. Both Dawson et al. (2014) and Barclay et al. (2015)
used an SE kernel (Equation 3.7) to try to capture out-of-transit variations in their
respective models of photometric time series, with Barclay et al. (2015) even getting
a definite confirmation on the planetary nature of Kepler-91 b (Esteves et al. 2013;
Sliski and Kipping 2014; Lillo-Box et al. 2014). More recently, Grunblatt et al. (2017)
extended these GP models to add some more physical motivation to the selection of
kernels. The same has also been seen for RV time series, with examples such as
Brewer and Stello (2009) and Faria et al. (2016).

A common disadvantage of GP regression is the computational cost of evaluating
the inverse covariance matrix Σ−1 of the likelihood function (Equation 3.10), which
has time complexity O(n3), meaning the computation cost scales with the cube of the
number of variables n in the set chosen from the input space x. Although computers
are very fast machines nowadays, the likelihood function has to be evaluated for every
sample of the posterior and when considering TESS light curves, which are the focus
of this work, the number of flux observations ranges from ∼ 103 to ∼ 104 data points,
making the calculation required for each sample prohibitively long.

In this work, I first identified and evaluated a GP regression framework that ac-
celerated massively the computational time of the likelihood estimation, by imposing
some limitations on the available kernel functions. Then, I took the idea of choosing
a physically motivated model a step further, by finding, within the limitations im-
posed in this framework, individual kernels that could best capture the stellar signals
discussed in Section 2.2, in the time domain. Finally, I implemented these kernels in
an open-source framework such that they share the same parameters as the stellar
signals themselves, making it more intuitive to reason about them and their prior
values.
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3.2.1 Speeding it up with celerite

To solve the issue of computational complexity, my method is built on top of celerite
(Foreman-Mackey et al. 2017), an open-source Python package that implements a
Gaussian process framework with some imposed restrictions in order to improve com-
putational times. The first limitation is that only one-dimensional datasets are al-
lowed, meaning the values of the input space x have to be scalars, although this
limitation has been expanded to two dimensions, under certain conditions (see Gor-
don et al. 2020). This is not an issue for this use case, since the models I am trying
to define are describing non-parametric functions in time-series data, where the input
space is time t. The second limitation imposed by the method is that the allowed
kernels in the celerite framework have to follow a specific functional form that is
stationary, meaning the covariance between two variables ti and tj depends only on
the distance between variables,

k(ti, tj) = k(τij) with τij = |ti − tj|. (3.11)

However, stationarity implies that covariance functions have the form of autocor-
relation functions, whose Fourier transform gives its power spectral density. In this
way, this limitation ends up providing a benefit, since I am looking for the equivalent
time-domain functions of the frequency-domain stellar-signal equations introduced in
Section 2.2.

To arrive at the functional form imposed by the method in Foreman-Mackey et al.
(2017), I follow their notation and procedure, and start with the work of Rybicki and
Press (1995) which defined a Gaussian process kernel of the form

kα(τij) = σ2
i δij + a exp(−cτij), (3.12)

where σ2
i is the measurement uncertainty for data observed at ti, δij is the Kronecker

delta, and α = {a, c} are the kernel’s hyper-parameters. With this restricted form,
the covariance matrix is tridiagonal and so inverting the matrix has a reduced time
complexity of O(n). Equation (3.12) can be generalized to form an arbitrary mixture
of exponentials,

kα(τij) = σ2
i δij +

M∑
m=1

am exp(−cmτij), (3.13)

whilst increasing the time complexity to O(nM2). Foreman-Mackey et al. (2017)
took the idea further by introducing complex parameters am → am ± i bm and cm →
cm ± i dm and rewriting the equation as a sum of sines and cosines, resulting in an
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expression for a mixture of quasi-periodic oscillators,

k(τij) = σ2
i δij +

M∑
m=1

[am exp(−cmτij) cos(dmτij) + bm exp(−cmτij) sin(dmτij)] , (3.14)

where the hyper-parameters are now α = {am, bm, cm, dm}. The PSD of this kernel,
obtained by computing its Fourier transform, is then

P (ω) =
M∑
m=1

√
2
π

(amcm + bmdm)(c2
m + d2

m) + (amcm − bmdm)ω2

ω4 + 2(c2
m − d2

m)ω2 + (c2
m + d2

m)2 , (3.15)

where ω = 2πν is the angular frequency.
To attribute a clearer physical meaning to the kernel in Equation (3.14), Foreman-

Mackey et al. (2017) established a relationship between its PSD (Equation 3.15) and
the PSD of a stochastically driven damped harmonic oscillator, given by

P (ω) =
√

2
π

S0ω
4
0

(ω2 − ω2
0)2 + ω2

0ω
2/Q2 , (3.16)

where ω0 is the frequency of the undamped oscillator, Q is the oscillator’s quality
factor, and S0 is an amplitude measure proportional to the power of the spectrum at
ω = ω0,

P (ω0) = 2
π
S0Q

2. (3.17)

By matching the PSDs from Equations (3.15) and (3.16), the hyper-parameters
α = {am, bm, cm, dm} can be equated to the set of parameters {S0, ω0, Q} from the
harmonic oscillator and so the kernel of Equation (3.14) can be rewritten as

k(τij;S0, Q, ω0) = S0ω0Q exp
(
−ω0τij

2Q

)

×


cosh(ηω0τij) + 1

2ηQ sinh(ηω0τij), 0 < Q < 1/2
2(1 + ω0τij), Q = 1/2
cos(ηω0τij) + 1

2ηQ sin(ηω0τij), 1/2 < Q

,
(3.18)

where η = |1− (4Q2)−1|1/2.

3.2.2 Kernels for the granulation and oscillations envelope

Specific limits of the kernel in Equation (3.18) are of physical interest and I explore
them to define kernels to characterize in the time domain the stellar signals discussed
in Section 2.2.

42



First, by considering the limit of Q = 1/
√

2, the kernel simplifies to

k(τij) = S0ω0 exp
(
− 1√

2
ω0τij

)
cos

(
ω0τij√

2
− π

4

)
, (3.19)

with the corresponding PSD becoming

P (ω) =
√

2
π

S0

(ω/ω0)4 + 1
. (3.20)

The PSD in Equation (3.20) has the same functional form as the PSD from Equa-
tion (2.23) used to model granulation. The parameters in these equations can then
be related by ensuring that both equations are equally normalized, the procedure for
which I show in Appendix A. The following relation between parameters is obtained:

agran =
√√

2S0,granω0,gran,

bgran = ω0,gran

2π .
(3.21)

The blue solid line in Figure 3.4 illustrates the shape of this PSD.
Another limit of interest for the kernel in Equation (3.18) is given for values of

Q > 1. In this case, the shape of its PSD function near the peak frequency ω0

approaches a Lorentzian. This limit, although an approximation, was chosen in this
work as the model to capture the signal from the oscillations envelope, characterized
in the frequency domain analysis by Equation (2.24). Figure 3.4 shows both models,
highlighting the differences between them, such as the low-frequency tail of power
and the less pronounced decay of power at higher frequencies of the PSD of the GP
kernel model. Although no clear relation can be drawn between the width of the
Gaussian, σ, in Equation (2.24) and the harmonic oscillator’s parameters {S0, ω0, Q},
the remaining two parameters from the Gaussian can be expressed as

Pg = 4S0,envQ
2
env,

νmax = ω0,env

2π .
(3.22)

3.2.3 Putting it all together - gptransits

I have implemented both models described in the previous section in an open-source
Python package named gptransits. The package is hosted on my Github repository
(https://github.com/Fill4/gptransits), where technical details and instructions
on installation and usage are discussed. This implementation, as mentioned earlier,
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Figure 3.4: Illustration and comparison of PSD profiles for different stellar signals.
Solid (blue) curve depicts the PSD of a granulation profile (Equation 3.20). Dashed
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signal from the oscillations envelope in the GP (Equation 3.15) and power spectrum
analysis (Equation 2.24), respectively.

builds on top of celerite and provides three kernel components to characterize stel-
lar signals: granulation, oscillations envelope and white noise. Since any combination
(sums or additions) of kernels is still a valid kernel, it is possible to design vari-
ous stellar signal models, with a straightforward example being the inclusion of two
granulation components, capturing signals at different characteristic frequencies.

The package also includes a parametric planetary transit model. Specifically, I
include the quadratic limb-darkened parametric model from Equation (2.21), by using
its implementation in the Python package batman (Kreidberg 2015), which has seen
extensive adoption in the literature.

To sample the parameter posterior distributions (Equation 3.9), I use the emcee1

Python package (Foreman-Mackey et al. 2013). This package provides an implemen-

1https://github.com/dfm/emcee
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tation of Goodman & Weare’s Affine Invariant Markov chain Monte Carlo (MCMC)
ensemble sampler (Goodman and Weare 2010) and can be used to perform Bayesian
parameter estimation given a prior distribution for each of the parameters in the
model.

This tool was tested extensively in the characterization of stellar signals both with
and without the inclusion of planetary transits, the methodology and results of which
are described in Section 3.3.

3.3 Testing the method

To evaluate the applicability of the framework to the characterization of stellar signals,
I performed two applications of the method to different sets of light curves without
planets. For these tests I define two slightly different models of stellar signals.

The first application is based on simulated TESS light curves, where the accuracy
of the extracted signal parameters is evaluated in comparison with the values used to
generate the data. The second one is based on subsets of Kepler light curves, with
the goal of gauging the accuracy and precision obtained for the signal parameters in
comparison with a standard characterization in the frequency domain.

Finally, a transit component is added to the models and a transit signal is injected
in the simulated TESS light curves, with the goal of evaluating the accuracy and
improvement in the recovery of the planetary properties.

The results presented in this section comprise the scope of the publication I led
introducing the method developed for simultaneous time-domain characterization of
planetary transits and stellar signals (Pereira et al. 2019).

3.3.1 Stellar signal models

As mentioned before, two models were considered for the tests used to evaluate the
framework.

Model 1 contains a single granulation kernel (Equation 3.19) to capture the
mesogranulation, an oscillations envelope kernel (Equation 3.18), where the limit
1.2 < Q < 18 was imposed empirically, to follow as closely as possible the Gaussian
envelope found in power-spectrum fitting, and a white noise kernel (Equation 3.6),
modeling extra variance at each point in time, not related to each point’s measure-
ment uncertainty, which is added in quadrature to the diagonal of the covariance
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matrix. The resulting GP kernel is

k(τij) = σ2
i δij+

+ S0,granω0,gran exp
(
− 1√

2
ω0,granτij

)
cos

(
ω0,granτij√

2
− π

4

)
+

+ S0,envω0,envQ exp
(
−ω0,envτij

2Q

)[
cos(ηω0,envτij) + 1

2ηQ sin(ηω0,envτij)
]
,

(3.23)

where, again, η = |1 − (4Q2)−1|1/2. Model 2 considers the addition of an extra
granulation kernel at higher frequencies, which is imposed by the priors (see bgran,2 in
Table 3.2).

Looking at the methodology of Kallinger et al. (2014), both the granulation and
mesogranulation components should be adopted when estimating the stellar back-
ground signal for red-giant stars, owing to granulation being relevant at different
timescales. The reason for also considering Model 1 in our tests is due to the shorter
temporal coverage of available TESS data (most targets are observed for a duration
of 27.4 days), as well as the higher white noise level expected, when compared with
the Kepler stars on which the aforementioned study was performed. For that same
reason, no model was considered with a third component, which is sometimes added
in the literature to characterize long-term variations (on the order of 1 cycle per 10
days; Corsaro et al. 2015).

Only uniform priors were considered for our models’ parameters, represented by
the symbol U and a lower and upper limit. We also defined considerably larger prior
intervals than usual to evaluate the capacity of the method to converge even with
reduced prior knowledge. The direct correspondence to frequency-domain models
ensures that power-spectrum fitting analysis of the same data can inform and restrict
these priors in future applications.

Tables 3.1 and 3.2 present the uniform prior bounds chosen for the prior distribu-
tions of all parameters in Models 1 and 2, respectively.

3.3.2 Parameter estimation and convergence metrics

To explore the parameter space and sample the posterior probability, we initialized
multiple MCMC chains, each of which produced 25,000 posterior samples. The num-
ber of chains varied for each of the two models used as it was defined as 4 times the
number of parameters in the model being tested.

To evaluate the convergence of the chains, a range of tests were calculated based
on the samples obtained. The Geweke statistic (Geweke 1992) was applied to all the
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Parameter Prior
agran,1 [ppm] U(10, 400)
bgran,1 [µHz] U(10, 200)
Pg [ppm] U(10, 1800)
Qenv U(1.2, 18)
νmax [µHz] U(80, 220)
White Noise [ppm] U(0, 400)

Table 3.1: Lower and upper bounds chosen for the uniform distributions used as
priors for the parameters in Model 1.

Parameter Prior
agran,1 [ppm] U(10, 400)
bgran,1 [µHz] U(10, 70)
agran,2 [ppm] U(10, 400)
bgran,2 [µHz] U(80, 300)
Pg [ppm] U(10, 1800)
Qenv U(1.2, 18)
νmax [µHz] U(80, 220)
White Noise [ppm] U(0, 400)

Table 3.2: Lower and upper bounds chosen for the uniform distributions used as
priors for the parameters in Model 2.

chains to estimate the burn-in period of each chain. Chains that did not pass this
test were removed from the determination of the final parameters. In the next step,
chains with low posterior probabilities were discarded, specifically, chains with an
average posterior probability of their samples lower than the 10th percentile of the
posterior probability distribution of all samples. This was done to avoid considering
any chains that converged to local minima.

For the remaining chains, we determined the univariate and multivariate Gelman-
Rubin diagnostics (Brooks and Gelman 1998), which evaluate convergence of Markov
chains by comparing the between-chains and within-chain variance. Whilst the uni-
variate approach analyzes each parameter of the model independently, the multivari-
ate version of this diagnostic takes into account covariances between the parameters,
so it is a more demanding diagnostic for convergence. While these tests are not strictly
valid when applied to these chains, since emcee produces correlated chains, the di-
agnostics still provide a numerical evaluation of convergence of the results. When
determining both of these diagnostics, up to 50% of the samples from each chain
(starting from the initial samples) were allowed to be discarded in order to improve
the convergence of the remaining samples. A maximum value of 1.1 was defined as
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the threshold enforced for the Gelman-Rubin diagnostic. The tests applied showed
that, after selection of the best samples and chains, even in the rare case where only
25% of all the initial samples where considered, the number of samples was large
enough to achieve accurate estimations on all parameters.

With the final samples selected, both the median and mode were calculated for
each of the model’s parameters along with two highest posterior density (HPD) in-
tervals. The first HPD interval calculated was a 68.3% HPD, which was used as a
measure of the lower and upper uncertainty on the value of each parameter (so that
meaningful uncertainties could also be determined for non-Gaussian sample distribu-
tions). The second was a 95% HPD interval, which was compared with the width of
the uniform prior defined for each of the model’s parameters in order to determine
whether the converged samples were exploring a small subset of the prior space or if
the entire prior had similar posterior probability, in which case the specific parameter
was flagged as not being well constrained.

3.3.3 TESS artificial light curves

The first application of our framework was to TESS -like artificial time series, where
the objective was to determine the accuracy of the recovered parameters that char-
acterize the stellar signals present in the simulated light curves. For this test, we
considered a set of 20 LLRGB stars (with effective temperature 4800 < Teff < 5500K,
frequency of maximum oscillation amplitude 105 < νmax < 185 µHz, and apparent
magnitude V < 11).

Generation of the artificial light curves was performed originally in the frequency
domain by using scaling relations, after which an inverse Fourier transform was ap-
plied, taking into consideration the 30-min cadence of TESS FFIs. We used a photo-
metric noise model for TESS (Sullivan et al. 2015; Campante et al. 2016b) in order to
predict the rms noise for a given exposure time, and included a systematic noise term
of 20 ppmhr1/2. To model the granulation PSD, a scaled version (to predict TESS
granulation amplitudes) of model F of Kallinger et al. (2014, see Equation 2.23) was
adopted, which contains two granulation components, the granulation and mesogran-
ulation. No aliased granulation power was considered. Individual radial, (mixed)
dipole and quadrupole modes were also modeled (Kuszlewicz et al. 2019).

For each of the 20 simulated stars, 10 independent 27.4-day time series were
generated. The values and corresponding uncertainties computed for each of the
model parameters took into account the analysis of at least 5 and up to all 10 of
these independent time series (chosen according to their performance in the evaluated
convergence statistics, as detailed in Section 3.3.2), so as to reduce the possibility of
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systematic errors. Specifically, each parameter was estimated as the median of the
values obtained for the chosen independent time series. Its uncertainty was defined
as the sum in quadrature of the uncertainty associated with the median value and
the standard deviation of the values determined for the remaining chosen time series.
Additionally, if a parameter from any of the chosen runs was identified as being not
constrained, the final parameter calculated from the results of all runs was flagged.

Results

We applied our method twice to all data sets, once for each of the models, i.e., Models
1 and 2. The parameters derived from the GP regression were then compared to the
input parameters used when generating the light curves. Figures 3.5 and 3.6 show
such a comparison for the parameters of Models 1 and 2, respectively.

The parameters shown in Figure 3.5 for Model 1 are the amplitude and charac-
teristic frequency of the mesogranulation component in the model, agran,1 and bgran,1,
respectively, the frequency of maximum oscillation, νmax, and the white noise. Figure
3.6 depicts the same parameters with the addition of the amplitude and characteris-
tic frequency of the granulation component, agran,2 and bgran,2, respectively. Both the
oscillator’s quality factor, Q, and the power at ν = νmax, Pg, are not shown, as the
artificial light curves result from simulating individual oscillation modes and hence
there are no bona fide input values to compare with.

In what follows, a given parameter is considered to have been accurately deter-
mined if the null offset (red dashed line) is within the 1σ interval (black dashed
lines) associated with the median of the data points (or bias; black solid line). Look-
ing at the results obtained when applying Model 1 (Figure 3.5), the amplitude of
the mesogranulation component, agran,1, is not correctly retrieved, showing a bias of
16.51% (4.24% scatter) relative to the input values in the mesogranulation compo-
nent in the data, whilst its characteristic frequency, bgran,1, is correctly recovered with
a bias of 8.05% (10.76% scatter). This is not too surprising, since the model being
considered is incomplete: the mesogranulation amplitude is being overestimated in
an attempt to capture the power in the two granulation components present in the
data. It should be noted that the low-frequency tail of the oscillation envelope profile
(see Section 3.2.2 and Figure 3.4) contributes to somewhat attenuating this offset.
Nevertheless, the estimation of νmax is robust, with this parameter being accurately
(1.14% bias) and precisely (3.34% scatter) recovered. Finally, the white noise level is
recovered to within 7% of the input value. The slight, overall underestimation of the
white noise level is to be expected because of the non-negligible contribution of the
oscillation envelope profile at high frequencies (see Figure 3.4). Concerning the out-
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Figure 3.5: Comparison of the parameters in the fit of Model 1 to the TESS -like
artificial data with the input used to generate those data. Data points represent the
relative deviation with respect to the input value, with error bars corresponding to
the uncertainties returned by the Bayesian sampling. Black solid and dashed lines
represent the median and standard deviation of the data points, respectively, with
their numerical values shown in the inset. The red dashed line denotes a null offset.
Data points are color-coded according to a star’s surface gravity, log g.

lying artificial star, it has the highest value of νmax amongst the stars in the sample.
Upon inspection of its PSD, it became clear that the proximity of the oscillations
to the Nyquist frequency (νNyq ∼ 283 µHz for the 30-min cadence of the simulated
light curves) prevents the white noise level from being robustly determined. For this
reason, this star was not considered when determining the bias and scatter values
shown for the white noise comparison.

Concerning Model 2 (Figure 3.6), the introduction of a second granulation com-
ponent in the model leads to an improvement in the fit to the mesogranulation signal,
with the amplitude and characteristic frequency within 8.55% (8.27% scatter) and
−1.68% (11.70% scatter) of the input values, respectively. Results are, however, no-
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Figure 3.6: Comparison of the parameters in the fit of Model 2 to the TESS -like
artificial data with the input used to generate those data. Data points represent the
relative deviation with respect to the input value, with error bars corresponding to the
uncertainties returned by the Bayesian sampling. Parameters that have been flagged
as not being constrained (see Section 3.3.2) have dotted edges. Black solid and dashed
lines represent the median and standard deviation of the data points, respectively,
with their numerical values shown in the inset. The red dashed line denotes a null
offset. Data points are color-coded according to a star’s surface gravity, log g.
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ticeably less robust for the added granulation component, with the correct amplitude
of the granulation being within uncertainties only due to the high scatter (21.40%
bias and 42.85% scatter) and the characteristic frequency not being constrained at
all (38.11% bias and 21.22% scatter). Finally, the estimation of νmax continues to be
robust (1.34% bias and 3.95% scatter) whilst the correct white noise level could not
be recovered (−10.61% bias and 5.77% scatter).

All in all, the introduction of the second granulation component does improve the
fit to the mesogranulation but its characteristic frequency cannot be constrained for
any star and both the characteristic frequency of the mesogranulation and νmax show
unconstrained results for some of the stars. The white noise is also not constrained
when adding the extra component to the model. Considering the high white noise
levels expected for TESS data, as well as the short duration of typical TESS time
series, Model 1 with only the mesogranulation should be better suited to accurately
find the stellar signals of RGB stars observed by TESS.

As an illustrative example of the performance of our GP regression method in the
characterization of the stellar signal in the time domain, Figure 3.7 shows a blowup
of the fit performed to one of the artificial time series. Figure 3.8 shows the PSD of
that same GP regression output compared to the PSD of the light curve. Both figures
show the results obtained when fitting Model 1 to the data.

3.3.4 Kepler light curves

For the application to Kepler light curves, the objective was now to compare the char-
acterization of the stellar signals in the time domain achieved by our GP regression
method to a typical approach based on the modeling of the PSD of the time series
in the frequency domain. The sample of stars considered for the test was the same
sample of 19 Kepler LLRGB stars considered in Corsaro et al. (2015). In order to
mimic the typical amount of data expected from TESS and to account for systematics
that might be present in the light curve, 10 non-overlapping subsets of 27.4 days of
observations were extracted from the full Kepler light curve of each star.

Once again, the values and corresponding uncertainties computed for each of the
model parameters take into account the analysis of at least 5 and up to all 10 of these
independent subsets, as was the case for the previous application.

To compare against the GP regression in the time domain, a standard fit to the
power spectrum was done using models with similar components to the ones included
in our GP kernel (see Section 3.3.1). The similarity concerns only the adopted model
for the oscillations envelope, which in the PSD fitting method is characterized by a
Gaussian envelope (Equation 2.24), since the remaining components have equivalent
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Figure 3.7: Predictive model (Model 1) output by the GP regression (mean and 1σ
interval) when applied to one of the artificial TESS -like time series. The plot is
zoomed in on the first ∼ 3 days of simulated data to improve visualization.

models in both the time and frequency-domain. The PSD analysis was performed
using the Diamonds code2 (Corsaro and De Ridder 2014), which fits the power spec-
trum and determines the model parameters within a Bayesian framework and has
had peer-reviewed applications in the literature (Corsaro et al. 2015; Corsaro et al.
2017).

Results

We applied both our method and the PSD fitting method twice to all data sets,
once for each of the models, i.e., Models 1 and 2. A comparison between parameters
obtained with the time domain GP and the power spectrum fit is shown in Figures 3.9
and 3.10 for Models 1 and 2, respectively. The parameters depicted are the same as
in Figures 3.5 and 3.6.

Contrary to the application to simulated light curves, the method is now tested
on real Kepler data for a sample of well-studied LLRGB stars. By doing this, the

2https://github.com/EnricoCorsaro/DIAMONDS
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Figure 3.8: Power spectral density of the same (full) light curve depicted in Figure 3.7.
The PSD of the light curve is shown in light gray, with a slightly smoothed version
overlapped in dark gray. The PSD of the GP regression output (Model 1) is shown
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and colors (see legend).

parameters derived through GP regression can be compared to the equivalent param-
eters obtained when performing a standard fit to the power spectrum. This test thus
allows for a comparison with the more traditional methodology used in asteroseismic
studies of stellar light curves.

Looking at the results obtained when considering Model 1 (Figure 3.9), the param-
eters describing the mesogranulation component in the model, agran,1 and bgran,1, are
underestimated, with relative biases of about −5% and −10%, respectively. This un-
derestimation is expected considering the low-frequency tail present in the oscillation
envelope profile (see Figure 3.4). To confirm that these offsets between parameters
were only due to the differences in the models considered (specifically, the component
that captures the signal from the oscillations), a second fit to the power spectrum was
performed, where the components chosen followed the exact power spectrum equa-
tions of the kernels used in the GP model, including the approximated one. Results
from this test confirmed that, when the models are an exact match, both the GP
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Figure 3.9: Comparison of the parameters in the fit of Model 1 to the Kepler time
series data both by means of a GP regression and power-spectrum fitting. Data
points represent the relative deviation with respect to the value determined using the
PSD-fitting procedure, with error bars corresponding to the sum in quadrature of the
uncertainties of both methods. Black solid and dashed lines represent the median and
standard deviation of the data points, respectively, with their numerical values shown
in the inset. The red dashed line denotes a null offset. Data points are color-coded
according to a star’s surface gravity, log g.

regression and the frequency domain fit recover the same results.
Concerning νmax, a small relative bias of 1.99% (1.19% scatter) is found between

methods. Finally, results for the white noise level show a relative bias of about −56%
(13.36% scatter) between the two methods. However, it should be noted that white
noise levels for the Kepler stars in the sample are relatively low (Kepler ’s effective
collecting area is larger than that of the individual TESS cameras by a factor of
∼102), which, coupled with differences in the models adopted between methods (see
Figure 3.4), results in large relative differences. Inspection of the absolute value of
this same bias reveals differences no greater than 15 ppm and similar between stars,
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Figure 3.10: Comparison of the parameters in the fit of Model 2 to the Kepler time
series data both by means of a GP regression and power-spectrum fitting. Data
points represent the relative deviation with respect to the value determined using
the PSD-fitting procedure, with error bars corresponding to the sum in quadrature
of the uncertainties of both methods. Parameters that have been flagged as not
being constrained (see Section 3.3.2) have dotted edges. Black solid and dashed lines
represent the median and standard deviation of the data points, respectively, with
their numerical values shown in the inset. The red dashed line denotes a null offset.
Data points are color-coded according to a star’s surface gravity, log g.
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which results in the trend seen in the relative offsets, where stars with higher white
noise (as determined by Diamonds) have a lower relative offset.

With respect to Model 2 (Figure 3.10), excellent agreement is seen between the
parameters describing the mesogranulation component, agran,1 and bgran,1, with rel-
ative differences of 0.86% and −4.14%, respectively. The low-frequency tail of the
oscillation envelope profile does not appear to be affecting this component. It does,
however, impact the parameters describing the higher frequency granulation compo-
nent. Whilst its amplitude, agran,2, is accurately recovered with a bias of −0.66%
(7.03% scatter), the characteristic frequency is systematically shifted, showing a bias
of −18.56% (9.71% scatter), with more than half the stars having parameters that
have not been well constrained (dotted edges). Regarding νmax, just like with Model
1, a small relative bias of 0.92% (1.21% scatter) is found between methods. For the
white noise level, results show a less pronounced discrepancy compared to the one
seen for Model 1, with the relative bias between methods now being of −48.71%
(16.89% scatter) and the absolute differences never exceeding 6 ppm.

To illustrate the result from the GP regression, a blowup of the output of the GP
regression when applied to one of the Kepler LLRGB stars in the sample is shown in
Figure 3.11. Figure 3.12 shows the PSD of that same GP regression result compared
to the PSD of the light curve. Both figures show the results obtained when fitting
Model 2 to the data.

Uncertainties in νmax

We now take a closer look at the uncertainties determined in the estimation of νmax by
both methods. Taking into account results from asteroseismology of red giants from
the first four months of Kepler data, Kallinger et al. (2010a) defined the following
relation to determine σνmax , a lower limit for the uncertainty in νmax:

σνmax = νres

(
1 + 4

(HBR/σg)2/3

)
, (3.24)

where HBR is the height-to-background ratio, defined as the ratio between the power
of the oscillations bump, Pg, and the background signal at ν = νmax, Bνmax . σg is
the width of the oscillations bump and νres is the frequency resolution, which is the
inverse of the dataset length.

Estimates of Pg, Bνmax and σg can be obtained from the scaling relations found in
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Figure 3.11: Predictive model (Model 2) output by the GP regression (mean and 1σ
interval) when applied to one of the Kepler LLRGB stars in the sample. The plot is
zoomed in on the first ∼ 3 days of observations to improve visualization.

Mosser et al. (2012a),

Pg = 2.03× 107 × ν−2.38
max , (3.25)

Bνmax = 6.37× 106 × ν−2.41
max , (3.26)

and in Campante et al. (2016b),

FWHMg = νmax

2 , (3.27)

σg = FWHMg

2
√

2 ln(2)
, (3.28)

where FWHMg is the full width at half maximum of the oscillations bump.
Using the values of νmax obtained by the GP method, Equation (3.24) was used to

determine an estimate of σνmax , which was then compared to the uncertainties in the
determination of νmax calculated by both the GP method, σGP, and the frequency-
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Figure 3.12: Power spectral density of the same (full) light curve depicted in Fig-
ure 3.11. The PSD of the light curve is shown in light gray, with a slightly smoothed
version overlapped in dark gray. The PSD of the GP regression output (Model 2) is
shown as a solid black curve, with individual components identified by different line
styles and colors (see legend).

domain method using Diamonds, σDiamonds. This comparison was only done for the
results considering Model 1, with the average absolute and relative values obtained
for these quantities, considering all 19 stars in the sample, being:

• 〈σνmax〉=7.15 µHz, (5.20%)

• 〈σGP〉=3.43 µHz, (2.46%)

• 〈σDiamonds〉=1.91 µHz, (1.44%)

The values above would suggest that both methods applied are underestimating by a
factor of 2 the uncertainties in νmax. However, since the relation from Equation (3.24)
was determined based on the uncertainties estimated by Kallinger et al. (2010a),
following the methodology described in Gruberbauer et al. (2009), the difference
between the expected uncertainty, σνmax , and the calculated uncertainties, σGP and
σDiamonds, might just be related to differences in the methods adopted. In any case, the
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uncertainty determination in the GP method, described in Section 3.3.2, estimated
similar, albeit slightly higher uncertainties, than the ones obtained with Diamonds,
providing some confidence in their conservative values (see Section 4.5 in Corsaro and
De Ridder (2014) for a description of uncertainty estimation with Diamonds).

3.3.5 Adding transits

Having confirmed the applicability of our method to the characterization of stellar
signals in the time domain, our next test was to determine the impact of including
the stellar model in the characterization of the planetary transit.

For our transit model, we considered the quadratic limb-darkened transit model
from Mandel and Agol (2002), described in Section 2.1.2, as is implemented in our
method (see Section 3.2.3). Since the transit model is parametric, we can directly set
it as the mean of our Gaussian process model for the stellar signals (which assumed
a mean of zero when only stellar signals were characterized). Considering our objec-
tive is to model TESS light curves, we select Model 1 as our model for the stellar
signals (Equation 3.23), following the conclusions from Section 3.3.3. This new com-
bined model should be capable of capturing both the stellar and the transit signals
simultaneously when modeling the light curve of a star. For comparison, we defined
a simpler transit model including only the same parametric transit component and
an additional Gaussian uncorrelated white noise component. This simpler model fol-
lowed a standard configuration found often in planetary transit characterization, so
as to evaluate the potential improvements in the determined transit parameters when
including the stellar signals simultaneously with the transit signal.

For the test, simulated transits of close-in giant planets (orbital periods from 0.5 to
27.4 days and radii from ∼0.4 to 2 RJ) were injected into the sample of simulated light
curves from Section 3.3.3, as described in section 3.1 of Campante et al. (2018). The
detection of the injected transits was evaluated using the Box-fitting Least Squares
method (BLS; Kovács et al. 2002), with all detections with a signal detection efficiency
(SDE) above 5.98 (a threshold determined empirically for 1-sector light curves) most
likely not being statistical false positives (see Section 4.3 for an extensive description
of this methodology for transit searches). For all likely detections, the light curves
were characterized using both models and the recovered transit parameters compared
with the true values used for the injected transits.
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Results

Figure 3.13 shows a comparison of the values for the transit period, P , transit epoch,
t0, ratio of radii, Rp/R? and impact parameter, b, recovered using both our model
with GPs (in blue) and with a simpler transit model (in orange), with the input
values used to simulate the transits injected in the TESS artifical light curves from
Section 3.3.3. Only the impact parameter is shown in the place of the semi-major axis
over stellar radius, a/R?, eccentricity, e, inclination, i and argument of periapsis, ω,
since all these parameters are degenerate when only photometric data is available. The
quadratic limb-darkening coefficients are also omitted given the interest in exploring
the recovery of the transit parameters and not stellar properties.

Following the same methodology as before, we have that, for both the period and
epoch, both models recover essentially the same results, with equally small, negligible
biases. For the period, the relative bias is -0.04% for both models, whilst for the
epoch our model obtains a bias of -6×10−4 (10−3 for the simpler model). Our GP
model does improve slightly on the scatter, with the comparison in terms of periods
having values of 0.07% and 0.10% for our model and the simpler model, respectively,
and the epoch comparison having values of 0.0203 and 0.0239 for our model and the
simpler one, respectively. As for the impact parameter, the value is less relevant,
since it represents a variety of other parameters jointly. Nevertheless, our model
obtains a bias of 0.02 (0.17 scatter) compared to a bias of 0.03 (0.18 scatter) for the
simpler model. Finally, we have the comparison of the recovered ratio of radii between
models. Here, our model not only recovers a noticeably more accurate value, with a
bias of -0.06%, compared to a bias of 1.71% for the simpler one, but the scatter is
also reduced, with our model obtaining 5.80% compared to the simpler model’s 6.49%.
This preliminary result suggests that our new combined model is capable of recovering
both more precise and accurate planetary radii, assuming a similar measurement of
the stellar radius.

Figure 3.14 shows an example of the fit achieved by our model to one of the
simulated light curves with an injected transit. In the upper and middle panels,
the complete model is shown, in orange, as well as the transit component separately
(in blue), over the light curve data. The middle panel shows a zoom in of the first
transit event. The bottom panel shows the PSD of the GP model, and its individual
components, overplotted on the power spectrum of the same light curve, with the
contributions from the transit removed.
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Figure 3.13: Comparison of the transit parameters recovered by both transit models
considered with the input parameters used in the simulated transits injected in the
TESS -like artificial light curves. The blue points correspond to our complete light
curve model, with transit and stellar signals characterized simultaneously, whilst the
orange points correspond to the simpler transit model, including only the transit
model and gaussian noise. Data points represent the relative deviation with respect
to the input value, with error bars corresponding to the uncertainties returned by
the Bayesian sampling. Solid colored lines and shaded regions represent the median
and standard deviation of the data points for each of the methods, respectively, with
their values shown in the legend above. The black dotted line denotes the null offset.
Stars in the x-axis are ordered by decreasing SDE (ranging from 6.47 to 4.72).
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Figure 3.14: Top: Fit of a TESS simulated light curve with an injected transit. Black
points and error bars correspond to the light curve data. The GP predictive model is
shown in orange, with the solid central line denoting the median of the distribution
and the shaded area the 1-σ interval. The transit component of the model is depicted
by the blue solid line. The panel below shows a zoom in of the first transit of the
light curve. Bottom: Power spectrum of the light curve in the panels above after
removing the transit signal. The PSD of the light curve is shown in light gray, with
a slightly smoothed version overlapped in dark gray. The PSD of the sum of the GP
components in the model is shown as a solid red curve, with individual components
identified by different colors (see legend).
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Chapter 4

TESS FFI transit search pipeline

TESS delivers two different data products from its observations of the sky, produced
from the 2-second full-frame images (FFI) obtained by each camera. For a select num-
ber of targets, pixel cutouts from around the target’s position are extracted from each
image, which are then stacked and summed into 2-minute cadence postage stamps.
For all other targets, their data have to be extracted from the FFIs, which are stacked
and summed to 30-min cadence.

Of all TESS data, only postage stamps have their data processed and delivered
to the community directly by NASA’s Science Payload Operations Center (SPOC)
pipeline (Jenkins et al. 2016), which provides corrected light curves as well as other
intermediate data products. In this work, I wanted to observe evolved stars, the
majority of which were not included in the sample of fast-cadence targets from TESS,
given the mission’s main objective of finding planets orbiting nearby bright dwarf
stars. For the former stars, their data has to be processed from the 30-min cadence
FFIs, which requires the creation of a data processing pipeline to extract and correct
light curves from the FFIs.

To that end, in this section I describe my own pipeline, composed mostly of
existing open-source software, adapted according to my use case and implemented
to work well together and to flow data automatically between each other. I also
implement some additional data processing methods when necessary.

The pipeline is divided in four components:

• Aperture photometry (Section 4.1)
• Systematics correction (Section 4.2)
• Transit search (Section 4.3)
• Transit validation (Section 4.4)
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4.1 Aperture photometry

For the purpose of light curve extraction and correction from the TESS FFIs, I used
the open-source Python package eleanor1, described in Feinstein et al. (2019).

eleanor is a tool that was originally designed specifically to extract target pixel
files from TESS FFIs and produce systematics-corrected light curves for any star
observed by TESS. By providing a target’s TIC ID or coordinates (right ascension
and declination), the tool first identifies whether the target is visible by any of TESS ’s
cameras during the multiple sectors of observations. For each sector where the target
is observed, the tool determines the pixel position of the target on the FFIs. Then,
it extracts a target pixel file (TPF) from the FFIs, i.e. a collection of pixel cutouts
centered on the calculated position of the target. One cutout is produced for each
exposure, and its size can be defined by the user (in pixels, with a default of 13 ×
13).

From the TPF, the tool then extracts a light curve using aperture photometry.
Aperture photometry first requires the selection of an aperture mask, essentially a
mask to define the pixels, and their weights, from which the stellar flux will be mea-
sured. Here, eleanor does not choose a specific aperture (though this can be over-
ridden by the user) and instead measures the photometry using a library of different
apertures (see figure 3 of Feinstein et al. (2019)). The final aperture is only chosen at
the end of the light curve extraction process by evaluating a metric, called the Com-
bined Differential Photometric Precision (CDPP), which was defined for the Kepler
mission and attempts to quantify the ease with which terrestrial transit signatures
can be detected (Christiansen et al. 2012).

For each trial aperture, eleanor extracts a light curve by summing up the flux con-
tributions of the star from the aperture mask pixels and then estimates and removes
the background signal from the remaining pixels (not included in the aperture). This
background-corrected light curve, referred to as the “raw” light curve by eleanor,
is then corrected for systematics by removing linear models fitted to the x and y
pixel positions and measured background, with time, which, in essence, removes sig-
nals correlated with any of these quantities. It is the light curve resulting from this
linear-model correction, referred to as the “corrected” light curve by eleanor, that
is used to determine the CDPP, so that the aperture and consequent light curve that
maximize the metric’s value can be selected.

eleanor also provides an additional method to further correct the light curve.
This method does principal component analysis (PCA) correction by utilizing the

1https://github.com/afeinstein20/eleanor
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Figure 4.1: Example of the three light curves returned by eleanor, extracted from the
TESS FFIs. The “raw” light curve contains the extracted flux from the target pixel
files with only background correction. The “corrected” and “pca” light curves include
additional corrections, with the former including some linear-model corrections to
remove long-term trends and the latter including corrections using the community
cotrending basis vectors (CBVs) provided by NASA (see text for details). The vertical
red dashed lines denote the start and end of the two TESS orbits for the target’s sector
(in this case Sector 8, as shown in red text between the two central lines). The target
is TIC 348835438, a red-giant star with a V -band magnitude of 10.9.

community cotrending basis vectors (CBVs), calculated and shared by the SPOC
pipeline (Jenkins et al. 2016). These CBVs are essentially light curves generated by
extracting the most common systematics trends across all stars of each camera and
during each sector of TESS. eleanor’s PCA correction method subtracts the three
most impactful CBVs for a given target from the light curve, a similar procedure
to the methodology the SPOC pipeline uses for short-cadence TESS targets. The
resulting light curve from this additional correction method is returned to the user
alongside the already mentioned ones, and is referred to as the “pca” light curve.

Figure 4.1 depicts an example of the three light curves returned by eleanor,
highlighting the removal of long-term trends from the “raw” light curve in both the
“corrected” and the “pca” light curves.

4.2 Systematics correction

Light curves returned by eleanor, albeit classified as corrected, are still often not
adequate for transit search. In this section, I describe the data processing and addi-
tional corrections carried out to prepare the light curves. First, eleanor returns one
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light curve per sector where the target is observed, so an initial step is to normalize
these individual sector light curves so that all sectors have the same median level of
the flux.

Inspection of these normalized light curves revealed that not only are there outlier
flux measurements of non-physical nature, but multiple light curves also show addi-
tional noise patterns with long duration, which also appeared to be of non-physical
nature. By inspecting multiple targets in the same sector, I concluded that this noise
seemed to be related to each individual sector, with similar noise patterns showing up
at similar observation times for targets observed by different cameras but during the
same sector, for both corrected light curves produced by eleanor. Figure 4.2 shows
some examples of the more extreme cases of noise patterns found for certain sectors,
in particular two targets in Sector 8 and two in Sector 12. These systematics are not
only undesirable due to their non-physical signal causing issues for any study of the
stellar signals (e.g., asteroseismology), but I also found that their high amplitude and
typical timescales lead to non-physical transit-like signals being detected in lieu of
potentially real, physical ones.

One observation that can be drawn from the examples shown in Figure 4.2 and
that, for the most part, was consistent for all examples explored, is that the noisy pat-
terns tend to show up near the start and end of each of TESS ’s orbits, in particular at
the start. To try and understand the reason behind these unexpected changes in flux,
I examined the NASA Data Release Notes2 for each sector. From these documents, I
verified that strong scattered light was observed at the start of each orbit, as well as
close to times when the satellite exhibits anomalous behavior, which was consistent
with the presence of most noisy patterns in the light curves. Also according to the
documents, the time-stamps when excessive scattered light was observed were not
considered for the systematics correction applied by NASA to short-cadence targets
(i.e. in the determination of the CBVs). Since the CBVs do not contain information
on the scattered light, its presence cannot be accounted for by the corrections, and
so the extracted light curves exhibit the aforementioned noisy patterns. As such, I
had to devise an alternative way of dealing with these signals.

For that, I decided to heuristically determine a set of time stamps per sector
to exclude from all light curves. Specifically, from my sample of LLRGB stars (see
Section 5.1), exclusively composed of targets from TESS ’s southern hemisphere, I
selected, for each sector, 5 stars observed by each camera, for a total of 20 stars per
sector. I then visually inspected all selected targets and identified ranges of time
stamps that had to be excluded, per sector, so that the noisy patterns present in

2https://archive.stsci.edu/tess/tess_drn.html
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Figure 4.2: TESS light curves highlighting the noisy patterns still present after ex-
traction and correction using eleanor. The TIC ID of each target and the sector
from which the light curve was extracted are shown in the top left of each panel. The
vertical red dashed lines denote the start and end of the two TESS orbits for each
target’s sector. Note how light curves from the same sector exhibit noise patterns at
similar time ranges, especially near the start and end of the TESS orbits.
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Sector Orbital ranges [BTJD] Additional [BTJD]

Sector 1
1325.29–1325.59 1338.23–1338.53

1347.0–1349.51
1339.64–1339.94 1352.89–1353.19

Sector 2
1354.09–1354.39 1366.86–1367.16
1368.58–1368.88 1381.22–1381.52

Sector 3
1382.71–1386.2 1395.15–1395.45
1396.65–1396.95 1404.99–1409.38

Sector 4
1410.89–1411.56 1423.22–1423.52
1424.54–1424.84 1436.56–1436.86

Sector 5
1437.98–1438.28 1449.91–1450.21
1451.54–1451.84 1463.44–1464.31

Sector 6
1465.2–1465.5 1476.73–1477.03
1478.09–1478.39 1489.76–1490.06

Sector 7
1491.6–1492.1 1502.75–1503.05
1504.69–1505.19 1515.8–1516.1

Sector 8
1517.33–1518.33 1528.78–1529.08

1531.74–1536.0
1530.25–1530.85 1541.71–1542.01

Sector 9
1543.21–1544.71 1555.55–1555.85
1556.71–1557.71 1568.29–1568.79

Sector 10
1569.42–1571.37 1581.5–1581.8
1582.45–1585.22 1595.39–1595.69

Sector 11
1596.76–1600.44 1609.41–1609.71
1610.77–1614.7 1623.6–1623.9

Sector 12
1624.94–1628.45 1638.71–1639.01
1640.02–1642.63 1652.6–1652.9

Sector 13
1653.9–1657.6 1667.4–1667.7
1668.61–1668.91 1682.07–1682.37

Table 4.1: Ranges of time stamps removed from light curve data for each of the first
13 sectors of TESS data. For each sector, an interval at both the start and end of each
of the two orbits was defined, as well as any additional intervals that were deemed
necessary given the noisy patterns observed in the representative light curves selected
for each sector. Some intervals are especially large due to anomalous behavior from
the TESS satellite, which caused longer time ranges to be discarded directly by the
TESS mission.
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Figure 4.3: Improvement in the light curves from the removal of the time-stamp
ranges defined in Table 4.1. The orange sections correspond to the portions of the
original (gray) light curve that were kept. The vertical red dashed lines denote the
start and end of the two TESS orbits for each target’s sector. The four light curves
are the same as in Figure 4.2. Note how the removed time-stamp ranges concentrate
mostly on the noisy patterns present in each light curve. The TIC ID of each target
and the sector from which the light curve was extracted are shown in the top left of
each panel.
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all their light curves would be removed. The objective was to minimize the num-
ber of light curves that would have extreme systematics present, whilst at the same
time maximizing their temporal coverage (since this procedure essentially reduces
the length of observations by removing data at the edges of the TESS orbits). The
defined, per-sector, time-stamp ranges are shown in Table 4.1, whilst Figure 4.3 il-
lustrates the results of removing the flagged time stamps from the four noisy light
curves shown in Figure 4.2. It is important to note that, since at the time of the
determination of these cuts, only the southern hemisphere of TESS observations had
been completed (i.e., the first year of observations), I have not yet determined a list
of ranges for the northern sectors, which will undoubtedly be necessary to account
for identical problematic signals in those targets.

Besides the time-stamp exclusions, due to some spurious and often isolated flux
measurement outliers showing very extreme values, I also performed sigma clipping at
6-σ, which I found to be conservative enough to not remove any points from potential
transits.

4.3 Transit search

Searching for transits in light curves has been commonly carried out in the literature
using an implementation of the Box-fitting Least Squares (BLS) algorithm (Kovács
et al. 2002). In this work, I used the implementation from the open-source Python
package astropy3 (Astropy Collaboration et al. 2013; Astropy Collaboration et al.
2018). This method characterizes a transit signal as a periodic signal of period P

that can take only two possible values, H and L. During the transit, the signal has
constant value L and its duration is defined as a fraction of the period, qP , where
q is a small value (∼ 0.01 − 0.05). Essentially, the transit is modeled as a periodic
box-shaped signal, as illustrated in the bottom panel of Figure 4.4.

By considering a grid of potential periods and durations for a transit, the method
finds, for each trial period, the transit duration, epoch and depth that best character-
ize the light curve by performing a least-squares fit to the data. For each trial period,
the BLS method then returns those best fit parameters as well as a goodness-of-fit
value, referred to as Signal Residue (SR) in Kovács et al. (2002). From this list of SR
values, the authors define a Signal Detection Efficiency (SDE) metric, as

SDE = SR − µSR

σSR
, (4.1)

3https://github.com/astropy/astropy
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Figure 4.4: Example of a periodogram and corresponding phase-folded light curve
and transit, obtained with the Box-fitting Least Squares (BLS) algorithm. Top: BLS
periodogram obtained for a sample TESS target, which shows for every trial period
(x-axis), the corresponding signal detection efficiency (SDE) metric (y-axis), which
measures the goodness of fit of a transit model, with that period, to the data. The
blue solid line highlights the period with the highest SDE, which is chosen as the
most significant transit for this light curve. The blue dashed lines are the harmonics
of the period corresponding to the highest peak. Bottom: Phase-folded light curve
of the same sample target, plotted with a BLS transit model. The gray and black
points are the phase-folded, original and binned (10-point bins) flux measurements,
respectively. The period used for the phase-folding is taken from the blue solid line in
the periodogram above. The model of that same transit is shown by the box-shaped
solid red line.

where SR is the goodness-of-fit value for each trial period, with µSR and σSR cor-
responding to its average and standard deviation when considering all periods, re-
spectively. Computing then the SDE for each trial period and plotting these values
with respect to the period results in a spectrum of all trial periods, commonly re-
ferred to as the BLS periodogram and illustrated in the top panel of Figure 4.4. This
periodogram, with all its corresponding SDE metrics, is then inspected to ascertain
whether a potential transit signal is present or not in the light curve.

Additionally, I also used the Transit Least Squares (TLS) method (Hippke and
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Figure 4.5: Example of a periodogram and corresponding phase-folded light curve
and transit, obtained with the Transit Least Squares (TLS) algorithm. Top: TLS
periodogram obtained for a sample TESS target, which shows for every trial period
(x-axis), the corresponding signal detection efficiency (SDE) metric (y-axis), which
measures the goodness of fit of a transit model, with that period, to the data. The
blue solid line highlights the period with the highest SDE, which is chosen as the
most significant transit for this light curve. The blue dashed lines are the harmonics
of the period corresponding to the highest peak. Bottom: Phase-folded light curve
of the same sample target, plotted with a TLS transit model. The gray and black
points are the phase-folded, original and binned (10-point bins) flux measurements,
respectively. The period used for the phase-folding is taken from the blue solid line in
the periodogram above. The model of that same transit is shown by the transit-like
solid red line, in contrast to the box-shaped BLS model shown in Figure 4.4.

Heller 2019), implemented in the open-source transitleastsquares4 Python pack-
age. This method follows closely the BLS method, introducing some changes to
attempt to improve the detection of planetary transits. The most significant one is
the introduction of limb-darkening in the transit model considered (see Section 2.1
for more details), to more closely match the expected physical signal of a transit, as
is illustrated in the bottom panel of Figure 4.5. Obviously, this added complexity in
the transit model introduces additional computational costs. To offset these costs,

4https://github.com/hippke/tls
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the authors of TLS found ways to optimize the selection of the grid of transit periods
and durations, including an informed non-linear spacing. Similarly to BLS, the TLS
method also returns a slightly modified SDE metric for each trial period (see equa-
tion 3 of Hippke and Heller (2019)), resulting in the TLS periodogram, illustrated
in the top panel of Figure 4.5. Additionally, the TLS method also computes the
significance (in units of standard deviations) of the difference between the depths of
the odd and even eclipses, a useful value to identify if potential transits are instead
produced by eclipsing binaries (see Section 4.4).

The reason for still including the BLS method, given the existence of the new
TLS implementation, is to complement the TLS search, given that BLS has stood
the test of time despite its less sophisticated model. This way, potential planet transit
detections with TLS can be confirmed also with BLS, serving as an extra measure of
confidence.

The entire process of the pipeline is automated until this stage, at which point,
for any target for which the pipeline successfully completed light curve extraction,
correction and transit search, a summary figure is created that contains the most
relevant information and plots concerning the target. Figure 4.6 depicts the summary
plot for TIC 55092869, known as KELT-11, a known host of a ∼ 1.35 RJ planet on a
∼ 4.74-day orbit (Pepper et al. 2017; Beatty et al. 2017).

4.4 Transit validation

As seen in the previous section, a transit search on a light curve produces a peri-
odogram, i.e. a spectrum of periods for which a transit model is fitted to the light
curve data and a resulting metric, the SDE, is calculated. Stars can have more than
one transiting planet, in which case different peaks in the periodogram could cor-
respond to different planetary signals. However, as discussed in Section 1.3.1, hot
Jupiters are very rare, either when orbiting main-sequence or evolved stars. They are
also usually found in single planet systems (Latham et al. 2011). In addition, there
are added challenges concerning the detection of planetary transits in red giants (dis-
cussed in Section 2.2). For all these reasons, I focused my efforts on looking for only
a single planet around each star, with a period from 1 to 20 days. In that respect,
the highest peak in a periodogram is taken to be the representative transit for that
target, and it is the one that undergoes validation to ascertain its nature.

In this pipeline, I introduced a two-step approach to the validation of transits. The
first step is a statistical procedure that identifies statistical false-positive signals up
to a chosen confidence level, so as to set apart the ones that have a higher probability
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of being of physical origin. The second approach is an automated method applied to
those signals that have been identified as astrophysical in nature. Its objective is to
attribute a probability for the signal to be either of planetary origin, or some other
astrophysical scenario.

4.4.1 Step 1 – Identifying statistical false-positives

To identify signals that have a high probability of being statistical false positives,
I start by defining a threshold for the SDE metric and classifying all signals whose
measured SDE is below this threshold as false-positives. A simple exercise to estimate
this SDE threshold is to perform a search on simulated light curves without transits
and studying the distribution of SDEs obtained. Campante et al. (2018) did just that
for TESS simulated light curves of LLRGB stars using the BLS algorithm, obtaining a
statistical false-positive rate of 1% when considering only signals with an SDE above
6.34. The authors also determined thresholds for either 1 or 2-sector light curves,
again for a false-positive rate of 1%, with the corresponding SDE values being 5.98
and 6.39, respectively.

For my search, given the usage of two different search methods (i.e. BLS and TLS),
I adopted a slightly different approach. Specifically, the SDE thresholds used for the
classification of signals were instead determined by examining the SDE distributions
obtained for all targets in the search. Section 5.2 describes all the data exploration
steps and transit validation applied to my TESS southern search.

Additionally, other metrics could also be used to further differentiate targets with
statistical physical signals. An example is the Combined Differential Photometric
Precision (CDPP) (mentioned in Section 4.1), which attempts to quantify the ease
with which terrestrial transit signatures could be detected in Kepler light curves
(Christiansen et al. 2012). However, I did not implement any additional metrics in
the pipeline besides the SDE.

4.4.2 Step 2 – Identifying astrophysical false-positives

For the identification of astrophysical false positives I applied VESPA (Morton 2012;
Morton 2015), which is a computationally expensive tool that performs automatic
astrophysical false-positive evaluation of transit signals. VESPA works under the as-
sumption that the candidate transit is of physical nature. The tool makes use of
provided properties of both the transit and the stellar host to determine whether
the transit signal is expected to originate from a planetary system scenario or from
another astrophysical configuration that can also cause transit-like signals, which it
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considers as being a false positive. In particular, VESPA evaluates three other astro-
physical system configurations: eclipsing binaries (EB), background eclipsing binaries
(BEB) and hierarchical triple stellar systems (HEB).

As a first step, VESPA uses the transit host’s celestial position, together with the
Galactic simulation code TRILEGAL (Girardi et al. 2005), to estimate the prior prob-
ability of each considered system configuration existing in the Galactic region given
by the target’s coordinates. Then, using provided stellar parameters for the host,
such as apparent stellar magnitudes (in particular, TESS magnitude is required for
TESS targets) and effective temperature, the tool simulates populations of each of
the considered physical scenarios, including planetary systems, such that the observa-
tional properties of the simulated systems match the ones provided. For each system
in the simulated populations, VESPA then determines the likelihood that such system
could produce a transit light curve with the same properties as the observed one.
The information from the priors and likelihoods is then combined into a posterior
probability as well as a false-positive probability (FPP), which states the probability
of this transit being caused by a non-planetary system.

The FPP is estimated as
FPP = 1− Pp, (4.2)

where the planetary scenario probability, Pp, is estimated by

Pp = Lpπp
Lpπp + LFPπFP

, (4.3)

with Li and πi representing the likelihoods and priors, respectively, and the subscripts
p and FP corresponding to the planetary scenario and the remaining false-positive
scenarios, respectively. VESPA considers the limit of FPP < 0.01 to be an adequate
one to determine a planetary nature for the transit.

As output, VESPA condenses most of the information from its analysis into a single
summary figure, an example of which is shown in Figure 4.7. The figure shows the
results obtained for the light curve of TIC 55092869 (KELT-11). Worth noting in the
figure is the bottom pie chart, which shows the posterior probabilities for each of the
considered physical scenarios. In this case, the tool correctly identified the transit
as that of a planetary candidate. Note also the FPP value shown in the lower right
corner, of FPP < ∼ 1 in 105, which gives a very confident indication that this transit
was due to a planetary companion.
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Figure 4.7: False-positive probability (FPP) summary plot from VESPA, for the transit
of TIC 55092869.01 (KELT-11 b). The upper left pie chart shows the prior probabil-
ity for each considered astrophysical scenario, taking into consideration the Galactic
location of the target (given by its coordinates). The upper right pie chart then shows
the likelihood of each scenario being responsible for the observed transit, evaluated
from the transit properties and phase-folded shape. Finally, the bottom pie chart
shows the posterior probability for each of the possible astrophysical scenarios, deter-
mined using both the likelihoods and priors. In this case, only the planetary scenario
has any posterior probability of explaining the transit. The red text on the lower left
corner denotes the mismatch between the odd and even transits and the depth of the
secondary eclipse, both important metrics where high values usually indicate astro-
physical false-positive scenarios. On the lower right, fpl,V is the “specific occurrence
rate” necessary for validation, as defined in section 3.4 of Morton (2012). Below it,
the false-positive probability, FPP, denotes the probability that the transit is caused
by a non-planetary astrophysical system.
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Chapter 5

TESS southern hemisphere search

With the pipeline to explore TESS FFI data and the method to characterize planetary
transits around evolved stars ready, my next step was to carry out a systematic search
for giant planets orbiting giant stars. And for that, I first needed to choose which
stars to look at.

I start this section by describing the steps taken for target selection, introducing
all limits imposed in order to select a sample of bright LLRGB stars in the southern
hemisphere of TESS. Then, I explore the results obtained from applying the search
pipeline (Chapter 4) to the stellar sample and detail all the steps taken to identify
and rank planet candidates. Afterwards, I introduce all planet candidates found
and discuss the results from modeling their light curves using my tool for transit
characterization (Chapter 3). Finally, I weigh in on the results of this search in the
context of my objectives for this work.

An important note concerning my efforts to search for giant planets in the TESS
data is that it has been conducted in the context of a collaboration. This collaboration
has not only allowed for additional confirmation on planet candidates found, ensuring
they are identified using independent pipelines, but has also resulted in the pursuit
of additional planet candidates, not included in my southern sample, which I also
introduce in this chapter.

5.1 Target selection
For the target list, targets were specifically limited to low-luminosity red-giant branch
(LLRGB) stars. The reasons for this choice are twofold. First, LLRGBs are evolved
enough, when compared to subgiants, that the characteristic frequencies of their
oscillations, or equivalently, their νmax, is lower than the Nyquist frequency of long-
cadence TESS observations, making it possible to detect oscillations, provided there
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are sufficient data. Second, the stars are small enough when compared to high-
luminosity red-giant branch and red-clump stars, that a transiting Jupiter-sized planet
should be detectable in their light curves. As an example, a Jupiter-sized planet
transiting an 8 R� star produces a 150 ppm decrease in flux, on the order of the
white noise level observed in my sample of TESS light curves, as demonstrated by
the σ parameter obtained in the light curve fit of TIC 348835438 (see Table 5.5), a
target close to the sample’s imposed limit on TESS magnitude of 10 (see Table 5.2).

Stellar properties for the targets were taken from the TESS Input Catalog (TIC;
Stassun et al. 2019), with the selection criteria being comprised of a set of empirical,
yet physically motivated limits imposed on these properties. The first set of limits
defined had the intent of singling out the giant stars from the entire sample of the
TIC. These limits were chosen by visual inspection of an HR diagram, such as the one
in Figure 5.1, in order to remove main-sequence and subgiant stars from the sample.
Specifically, the limits were imposed using the magnitudes of the Gaia blue and red
photometer bands, GBP and GRP, respectively, as well as the Gaia G-band absolute
magnitude, Gabs, following

0.975 < GBP −GRP < 3.0,
Gabs < 4.1.

(5.1)

The Gaia absolute magnitude is not directly available in the TIC and was estimated
following

Gabs = G+ 5(log10(π) + 1), (5.2)

where G is the Gaia G-band magnitude and π is the Gaia parallax. The left plot of
Figure 5.1 illustrates this first set of limits, represented by the dashed-line delimited
area in the HR diagram, inside which are the giant stars.

The second selection criterion defined was intended to distinguish the LLRGB
targets from the rest of the giant sample. To do so, the estimated stellar radius
measurements present in the TIC were used. These radii were determined using the
Stefan–Boltzmann relation, with distances calculated usingGaia parallaxes, and effec-
tive temperatures obtained either from spectroscopy (when available) or derredened
colors (see section 2.3.5 of Stassun et al. (2019) for more details). When comparing
their radii to asteroseismic radii from Huber et al. (2017), whose sample includes
stars ranging from dwarfs to red giants, Stassun et al. (2019) find a mean difference
of 0.64% (7.03% scatter), for all stars in common between both works.

Initial radius limits for the selection of LLRGB stars were set between 3 R� and
8 R�. Then, assuming a conservative estimate of the systematics in the TIC radii of
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Figure 5.1: HR Diagram showing the target selection of all giant stars (on the left)
and LLRGB stars (on the right, in red) from the TESS Input Catalog. The selection
criteria concerning the left panel were based on cuts in both color and magnitude,
described in Equation (5.1). The selection concerning the right panel was defined
by considering only stars with a radius between 2.5 R� and 10 R�, according to the
value available in the TIC.
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over 15%, the limits were expanded to radii between 2.5 R� and 10 R�. This ensured
that the sample would include all desired targets, with the drawback of adding a
residual amount of targets of less interest for my objectives, i.e., subgiants and red
clump stars. The right panel of Figure 5.1 highlights the location of this LLRGB
sample in an HR diagram, in red.

Additionally, in order to improve the chances of detecting solar-like oscillations
whilst keeping the number of stars to a minimum, the sample was limited to brighter
targets, by defining a ceiling in TESS magnitude of 10 (Mackereth et al. 2021). Stars
with TESS magnitude brighter than 6.8 were also removed (which represented ∼2%
of the targets), since their brightness is expected to saturate TESS ’s CCDs (Sullivan
et al. 2015) and eleanor does not have any implemented method to specifically handle
such cases (Feinstein et al. 2019).

An important note on the target list is that, although all selected targets are
present in the TIC, not all of them have been observed by TESS, since the satellite’s
sky coverage during the nominal mission has a ∼12◦ gap in latitude, centered on the
ecliptic plane, as well as small gaps between the various cameras and CCDs within
the cameras.

To conclude, after all selection limits were considered, the sample contained about
100,000 stars, approximately evenly divided between the northern and southern TESS
hemispheres. Out of this all-sky sample, the search was restricted to the southern
targets, as at the time this work was carried out, the second year of TESS observations
was still underway. This southern sample has around 50,000 LLRGB stars, with
40,772 observed by TESS.

5.2 Sample analysis

For all targets in the target list, I ran my pipeline (Chapter 4) up to the transit search
and saved all results for data analysis and transit validation.

As was discussed in Section 4.4, transit validation was conceptually separated into
two steps. Initially, I was looking to try and identify whether the detected signals
were physical in nature, or merely the result of noise. Then, for signals of likely
physical nature, I wanted to identify whether they were caused by a planet or some
other astrophysical false-positive scenario.

For the identification of physical signals, the initial step was to classify statisti-
cal false-positives, following the methodology described in Section 4.4. As the SDE
thresholds are sensitive to the amount of data available for each target, I opted to
separate targets into different groups according to the available number of sectors.
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Figure 5.2: Distribution of the signal detection efficiency (SDE) metric obtained for all
light curves in my TESS southern search. Each plot shows the SDE for both the TLS
(top) and the BLS (bottom) methods. The SDE values are also grouped according
to the number of sectors of data available for the targets, with groups defined for
1-sector, 2-sector and multi-sector light curves, going from the left to right.

Ultimately, three groups of targets were considered, thus leading to the separation of
all targets into 1-sector, 2-sector or multi-sector (≥3 sectors) targets.

The SDE distributions for targets in their respective groups are depicted in Fig-
ure 5.2, for both the TLS (top) and BLS (bottom) methods. The figure also highlights
the values of the median SDE plus one, two or three mean absolute deviations (MAD)
for each of the distributions. As shown in the figure, there is a shift towards higher
values in the distributions’ median SDE, as light curves with more sectors are consid-
ered, which was taken into consideration for the selection of three bins of targets (I
explored additional binning configurations, but found them to be less significant and,
given the relatively small number of multi-sector targets, opted for choosing three
bins, as described above).

To be conservative, the SDE values selected as thresholds for the classification
of statistical false positives were the median plus one MAD from each of the dis-
tributions. This corresponded to two SDE thresholds per bin, one for each search
method. Based on these thresholds, all light curves where the signal SDE was above
the thresholds for both search methods were shortlisted. Applying this selection cri-
terion reduced the number of stars to about 3000, from the initial number of 40,772
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targets observed by TESS.
Figures 5.3, 5.4 and 5.5 highlight some of the signal properties of these 3000

transiting candidates, for 1-sector, 2-sector and multi-sector targets, respectively.
The figures show all targets classified as statistical false positives as gray points in the
background, whilst in the foreground the targets that pass the median plus one, two
and three MAD SDE thresholds are highlighted in green, blue and red, respectively.
From top to bottom and from left to right, the panels depict the signal period (in
days), duration (in hours), fractional depth and mismatch between odd and even
eclipses (in standard deviations) against the TLS SDE, respectively. The dashed
black line in the signal depth panel denotes the 1% signal depth, which was defined
as an upper limit above which a signal cannot be of planetary nature (given the
properties defined for my sample of LLRGB targets, a depth of 1% will, at best,
correspond to a 2.5 RJ orbiting body). For the odd-even mismatch panel, the dashed
black line denotes the 5-σ limit, also defined as an upper limit above which the signal
cannot be considered of a planetary nature and its most likely originating from an
eclipsing binary.

Of particular note in these figures is the unexpectedly large number of shortlisted
targets with signal periods ∼ 12 − 15 days, more pronounced for the multi-sector
targets. This is similar to the pattern initially observed in the search which led to the
corrections introduced in Section 4.2, albeit now being considerably less noticeable.
The cause of this excess of signals is the uncorrected scattered light near the start
and end of the TESS orbits, an issue that the added corrections targeted.

This sample of ∼3000 targets constitutes a reproducible, magnitude-limited sam-
ple of candidate transit signals statistically validated as significant, pertaining to the
entire TESS southern hemisphere. It can potentially be used as a starting point for
occurrence rate studies (see Section 6.2), requiring additional physical validation of
all signals, for example through a systematic application of the VESPA tool. For this
thesis, I decided to instead focus on the confirmation of the most promising planet
candidates in the sample, so I adopted a more informal approach. This approach
aimed at identifying and ranking a smaller sample of potential planet candidates, for
which RV follow-up could be procured.

For that, all targets in the sample of 3000 were visually inspected, an exercise done
primarily by analyzing the targets’ corresponding summary plot (for an example, see
Figure 4.6), with particular attention given to the signal’s shape and properties. This
was done in an attempt to distinguish all signals that could be categorized as physical
in nature (either from a planet or another astrophysical system) and resulted in 254
targets classified as physical signals.
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Overview (1 Sector)

Figure 5.3: Overview of the signal properties for all targets in our TESS southern
search that have one sector of data. The gray dots in the background represent all
signals classified as statistical false positives, whilst the green, blue and red points
are the signals that pass the median plus one, two and three MAD SDE thresholds.
From top to bottom and from left to right, the panels depict the signal period,
duration, depth and mismatch between odd and even eclipses against the TLS SDE,
respectively. The dashed black line in the signal depth panel denotes the 1% signal
depth, which was defined as an upper limit above which a signal cannot be of planetary
nature (upper limit in the inset). In the odd-even mismatch panel, the dashed black
line denotes the 5-σ limit, also defined as an upper limit above which the signal cannot
be considered of a planetary nature and is most likely originating from an eclipsing
binary.
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Overview (2 Sectors)

Figure 5.4: Overview of the signal properties for all targets in our TESS southern
search that have two sectors of data. The gray dots in the background represent all
signals classified as statistical false positives, whilst the green, blue and red points
are the signals that pass the median plus one, two and three MAD SDE thresholds.
From top to bottom and from left to right, the panels depict the signal period,
duration, depth and mismatch between odd and even eclipses against the TLS SDE,
respectively. The dashed black line in the signal depth panel denotes the 1% signal
depth, which was defined as an upper limit above which a signal cannot be of planetary
nature (upper limit in the inset). In the odd-even mismatch panel, the dashed black
line denotes the 5-σ limit, also defined as an upper limit above which the signal cannot
be considered of a planetary nature and is most likely originating from an eclipsing
binary.
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Figure 5.5: Overview of the signal properties for all targets in our TESS southern
search that have multiple (≥3) sectors of data. The gray dots in the background
represent all signals classified as statistical false positives, whilst the green, blue and
red points are the signals that pass the median plus one, two and three MAD SDE
thresholds. From top to bottom and from left to right, the panels depict the signal
period, duration, depth and mismatch between odd and even eclipses against the TLS
SDE, respectively. The dashed black line in the signal depth panel denotes the 1%
signal depth, which was defined as an upper limit above which a signal cannot be
of planetary nature (upper limit in the inset). In the odd-even mismatch panel, the
dashed black line denotes the 5-σ limit, also defined as an upper limit above which
the signal cannot be considered of a planetary nature and is most likely originating
from an eclipsing binary.
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The signals of all targets in this physical sample were then evaluated with VESPA
to identify astrophysical false positives (EBs, BEBs, HEBs or other unknown signals;
see Section 4.4). Additionally, the visual analysis was repeated, this time aimed at
determining the physical nature of the signal, as an additional result for comparison
with the verdict of VESPA. Specifically, I searched for patterns of certain astrophysical
scenarios that can be easily identified visually or from a signal’s properties, which
can either reinforce, if there is agreement, or call into question, if not, the conclusions
reached by VESPA. Some common visual patterns and properties I looked for in the
candidate transits were:

• Transit with a V-shape, indicative of an eclipsing binary.
• Transit signals are only present in some of the TESS sectors, indicative of a

signal not originating from the target, possibly a foreground eclipsing binary.
• Transit depths larger than 1%, indicative that the signal is (likely) not from a

planet.
• Candidates with a significant secondary eclipse, indicative of an eclipsing binary.
• Candidates with a significant difference between odd and even transits (σ > 5),

indicative of a secondary eclipse, and consequently an eclipsing binary.

Figure 5.6 depicts examples of light curves examined during this search and illus-
trates some of those characteristic patterns for specific astrophysical scenarios, namely
for a planet candidate, an eclipsing binary and a background eclipsing binary, from
top to bottom, respectively. The bottom panel of the figure, in particular, highlights
an unexpected example of a light curve that required a more comprehensive analysis
to determine its source, which we detail below.

Finally, taking into consideration the results of both VESPA and the visual inspec-
tion, transits from potential planet candidates were singled out and ranked. All in
all, I selected 4 targets as having a high-probability of hosting a planet, out of the
254 signals identified as being of physical origin. This points to ∼ 1.6% of all physi-
cal signals identified being of planetary origin or, the other way around, ∼ 98.4% of
the physical signals being astrophysical false positives. This false-positive rate is in
agreement with the value found by Sliski and Kipping (2014) for Kepler ’s giant stars
with a single transiting object of 70%± 30%.

Taking a closer look at the signal classified as a background eclipsing binary in
the bottom panel of Figure 5.6, an inspection of the three light curves produced by
eleanor for this target, shown in Figure 5.7, revealed that only the “corrected” light
curve did not show the V-shaped signal during the target’s first orbit. To understand
why that was the case, Figure 5.8 shows two diagnostic panels enabling a closer look
at the data in the pixel files.
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Figure 5.6: Three light curves demonstrating expected eclipse signals of different
astrophysical scenarios. The vertical red dashed lines denote the start and end of the
two TESS orbits for each target’s sector. Top: Light curve has signals with a round
shape and relatively shallow depth, and was visually identified as a planet candidate.
Middle: Light curve is V-shaped and has deep signals, commonly associated with
eclipsing binaries. Bottom: Light curve with signals similar to those in the middle
panel, but which are only present in the second orbit of the depicted sector. This
signal was classified visually as originating from a background eclipsing binary after
inspection of the target pixel files from which the light curve was extracted (see text
for details).

On the top, a single frame from the pixel files is shown, with all stars in the field
of the observed target denoted by red circles (and the target itself with an additional
red cross in its center). The white solid line denotes the aperture selected by eleanor
to extract the target’s light curve. Of particular note is the bright star to the left
of the main target, close to the bounds of the aperture. Turning now to the bottom
panel, nine light curves are shown, corresponding to the individual flux contributions
of the nine pixels included in the selected aperture. The conspicuous V-shaped signal
is clearly visible in the light curves from the leftmost pixels, on the same side of the
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Figure 5.7: Raw, corrected and pca light curves produced by eleanor for the back-
ground eclipsing binary in the lower panel of Figure 5.6. The vertical red dashed lines
denote the start and end of the two TESS orbits for the target’s sector. Note how the
corrected light curve does not have a V-shaped transit signal during the first orbit,
unlike the raw and pca ones.

nearby bright star close to the aperture. This pointed to the source of the eclipsing
binary signal being from this close-by star.

The next step was to understand why this signal is only present in the second orbit
of the “corrected” light curve, unlike the “pca” light curve. Both these light curves
are produced from a different set of corrections applied to the “raw” light curve, as
mentioned in Section 4.1, indicating that the absence of the eclipse-like signal during
the first orbit of the “corrected” light curve was likely caused by these corrections.

The “pca” light curve has corrections applied based on the CBVs provided by
NASA (see Section 4.1), which are calculated per TESS camera, meaning the con-
tribution of a single nearby star is not taken into account. On the other hand, the
“corrected” light curve includes background correction, calculated using all pixels
from the target pixel file with the exception of the ones from the aperture. In this
case, it seems plausible that eleanor might have been able to correctly remove this
V-shaped signal only for data from the first orbit, leading to this strange signal in
the light curve.

5.3 Planet candidates

From the search for transits in the TESS southern sample, four planet candidates
were identified, TIC 55092869.01, TIC 441462736.01, TIC 348835438.01 and TIC
204650483.01. Of these, the former two are known hosts, and the latter two had not
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Figure 5.8: Pixel file inspection of the background eclipsing binary in the lower panel
of Figure 5.6. Top: Single frame from the target pixel file of the target. Red circles
denote all stars in the field of the observed target that are brighter than Gaia G
magnitude 16, with the size scaled to that same magnitude (the circle with a cross in
its center denotes the target). The white solid line denotes the aperture selected by
eleanor to extract the target’s light curve. Note the bright star to the left of the main
target, close to the bounds of the aperture. Bottom: Light curves corresponding to
the individual flux contributions of each of the nine pixels inside the target’s selected
aperture, throughout the entire sector. The presence of the signal from an eclipsing
binary concentrated only on the pixels on the left. Together with the presence of a
star close to the bounds of the aperture on this same side suggests that the V-shaped
signals are coming from this external star.
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Target FPP Figure

TIC 55092869.01 6.54 × 10−6 Figure B.1
TIC 441462736.01 1.32 × 10−2 Figure B.2
TIC 348835438.01 8.99 × 10−1 Figure B.3
TIC 204650483.01 2.77 × 10−1 Figure B.4
TIC 394918211.01 6.64 × 10−3 Figure B.5

Table 5.1: VESPA false-positive probabilities inferred for each of the five planet candi-
dates identified in this work’s TESS southern search for transits. The middle column
denotes the astrophysical false-positive probability, that is, the probability that the
transit is not of planetary nature but due to another astrophysical scenario. The
rightmost column points to the figure associated with the target’s analysis, in Ap-
pendix B.

been yet identified as planet candidates. In this section, I introduce each candidate
and their host, show the results from the characterization of the system using the GP
time-domain model and discuss some of its properties. For one of these systems, for
which RV follow-up data are available, I also do an additional joint characterization
of its transit and radial-velocity signals, to obtain both the mass and radius of the
planet, and consequently, its mean density.

Furthermore, I introduce an additional candidate, TIC 394918211.01, not part of
the sample, which was identified by colleagues in our collaboration and for which RV
follow-up observations have also been acquired. For that candidate I also character-
ized both the TESS light curve individually and the transit and RVs simultaneously.

Table 5.1 shows the results from the VESPA automated analysis for these five candi-
dates. The middle column denotes the astrophysical false-positive probability, that is,
the probability that the transit is not of planetary nature but instead originates from
another astrophysical scenario. The rightmost column points to the figure associated
with the target’s analysis, in Appendix B.

Considering a 1% false-positive rate as the limit to consider a candidate as of
planetary nature, three of the five candidates in this list would not be statistically
classified as planets. One of these three, TIC 441462736.01, is a known planet (Huber
et al. 2019). The other two have also been tentatively confirmed as planets, as I will
show below (Pereira et al. in prep., Grunblatt et al. in prep.).

These classifications highlight one important aspect of the application of VESPA,
that is, whilst it is a very powerful tool for population studies (Morton et al. 2016),
when used on a case-by-case basis, care must be taken. This reinforces the decision
to do a visual classification of the physical signals in addition to the analysis based
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on VESPA. It was by considering the results of both these analyses, which is inevitably
subjective due to the nature of a visual classification, that all five planet candidates
were selected. It bears mention that promising transit signals were discussed and
cross-checked with other pipelines within the context of our collaboration, emphasiz-
ing the meticulousness of the process followed to select and rank planet candidates
for RV follow-up.

Table 5.2 details the stellar properties of the five candidates’ hosts. For the most
part, the values are taken from the TESS Input Catalog (Stassun et al. 2019), with
a dash meaning there are no available data (no stellar masses are present in the TIC
for any of the five targets). For the two known hosts, stellar parameters are taken
directly from the discovery papers, as noted by the “Source” column in the table.

5.3.1 TIC 55092869.01

Planet candidate TIC 55092869.01 is a known giant planet, commonly known as
KELT-11 b1 and discovered by Pepper et al. (2017). The planet has a radius of
1.37+0.15

−0.12 RJ and a mass of 0.195+0.019
−0.018 MJ, and orbits its host star on a period of

4.736529+0.000068
−0.000059 days. The host star, KELT-11, is a subgiant with a radius of 2.72+0.21

−0.17

R�.
Table 5.3 shows the prior and posterior distributions of each parameter of the GP

+ transit model fitted to the TESS light curve of this target. Priors follow uniform
(U), log-uniform (LU) and normal (N ) distributions. Figure C.1 shows an alternative
look at the posterior distributions of each parameter, through an histogram of all the
posterior samples drawn during the fit. Note that the estimates on the eccentricity e
and argument of periapsis ω are unconstrained since there is a degeneracy between
these parameters when just fitting the light curve data, something also observed in
all subsequent characterizations with the GP + transit model.

Figure 5.9 shows the light curve with the complete model in orange, as well as
the transit component separately (in blue) in the two top panels. Below is the PSD
of the GP model, and its individual components, overplotted on the power spectrum
of the light curve, with the contributions from the transit removed. The oscillations
envelope component was not included in the model since the oscillations for this target
are expected to be present at higher frequencies than the Nyquist frequency of TESS
30-min cadence data (∼ 283µHz).

Looking at the light curve in the upper panel of Figure 5.9, one noticeable feature
that can be observed are the out-of-transit variations. These are not found in the

1https://exofop.ipac.caltech.edu/tess/target.php?id=55092869
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Property Value Source
TIC 55092869 (KELT-11)

TESS magnitude 7.32 TIC, Stassun et al. (2019)
V magnitude 8.04 TIC, Stassun et al. (2019)
Parallax, π [mas] 10.056 ± 0.0526 TIC, Stassun et al. (2019)
Effective temperature, Teff [K] 5370 ± 50 Pepper et al. (2017)
Stellar radius, R? [R�] 2.72 ± 0.20 Pepper et al. (2017)
Stellar mass, M? [M�] 1.438 ± 0.06 Pepper et al. (2017)

TIC 441462736 (TOI 197)
TESS magnitude 7.36 TIC, Stassun et al. (2019)
V magnitude 8.15 TIC, Stassun et al. (2019)
Parallax, π [mas] 10.518 ± 0.080 Huber et al. (2019)
Effective temperature, Teff [K] 5080 ± 90 Huber et al. (2019)
Stellar radius, R? [R�] 2.943 ± 0.064 Huber et al. (2019)
Stellar mass, M? [M�] 1.212 ± 0.074 Huber et al. (2019)

TIC 348835438
TESS magnitude 9.99 TIC, Stassun et al. (2019)
V magnitude 10.92 TIC, Stassun et al. (2019)
Parallax, π [mas] 2.513 ± 0.041 TIC, Stassun et al. (2019)
Effective temperature, Teff [K] 4859 ± 122 TIC, Stassun et al. (2019)
Stellar radius, R? [R�] 3.98 TIC, Stassun et al. (2019)
Stellar mass, M? [M�] — TIC, Stassun et al. (2019)

TIC 204650483
TESS magnitude 9.03 TIC, Stassun et al. (2019)
V magnitude 9.97 TIC, Stassun et al. (2019)
Parallax, π [mas] 4.602 ± 0.052 TIC, Stassun et al. (2019)
Effective temperature, Teff [K] 4956 ± 122 TIC, Stassun et al. (2019)
Stellar radius, R? [R�] 3.38 TIC, Stassun et al. (2019)
Stellar mass, M? [M�] — TIC, Stassun et al. (2019)

TIC 394918211
TESS magnitude 10.79 TIC, Stassun et al. (2019)
V magnitude 11.71 TIC, Stassun et al. (2019)
Parallax, π [mas] 2.165 ± 0.023 TIC, Stassun et al. (2019)
Effective temperature, Teff [K] 4913 ± 122 TIC, Stassun et al. (2019)
Stellar radius, R? [R�] 3.41 TIC, Stassun et al. (2019)
Stellar mass, M? [M�] — TIC, Stassun et al. (2019)

Table 5.2: Available stellar properties for the five stars with planet candidates identi-
fied in this work’s TESS southern search for transits. Most information is taken from
the TESS Input Catalog (Stassun et al. 2019), with stellar parameters of the two
known hosts taken from their respective discovery papers. A dash means no available
values in the TIC.
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Figure 5.9: Top: Light curve fit of planet candidate TIC 55092869.01 (KELT-11 b).
Black points and error bars correspond to the light curve data. The GP predictive
model is shown in orange, with the solid central line denoting the median of the
distribution and the shaded area the 1-σ interval. The transit component of the
model is depicted by the blue solid line. The panel below it has a zoom in of the first
transit of the light curve. Bottom: Power spectrum of the light curve in the panel
above. The PSD of the light curve is shown in light gray, with a slightly smoothed
version overlapped in dark gray. The PSD of the sum of the GP components in the
model in the panels above is shown as a solid red curve, with individual components
identified by different colors (see legend).
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Parameter Prior Posterior 84% 16%

ameso [ppm] U(10, 1000) 262.91 +46.75 -33.66
bmeso [µHz] U(1, 280) 5.01 +0.90 -0.82
σ [ppm] U(10, 1000) 158.72 +3.75 -3.84
P [days] U(4.2, 5.2) 4.73522 +0.00049 -0.00051
t0 [BTJD] U(1548.0, 1550.0) 1549.0796 +0.0017 -0.0019
Rp/R? LU(0.001, 0.1) 0.0456 +0.0009 -0.0006
a/R? LU(1.5, 20) 4.46 +0.88 -0.90
i [deg] U(60.0, 90.0) 85.65 +2.92 -4.99
e U(0.0, 0.5) 0.26 +0.17 -0.17
ω [deg] U(0.0, 360.0) 123.66 +107.68 -68.48
u1 N (0.6, 0.1) 0.49 +0.06 -0.06
u2 N (0.09, 0.1) -0.03 +0.09 -0.09

Table 5.3: Prior and posterior distributions for all parameters in the GP + transit
model obtained in the characterization of the TESS light curve of TIC 55092869.01
(KELT-11 b). Figure C.1 shows an alternative look at the posterior distributions of
each parameter, through an histogram of all the posterior samples drawn during the
fit.

light curve from Pepper et al. (2017), although, given that their data originated
from ground-based observations, the noise level might have been too large for such a
detection. The start of Chapter 2 describes common causes for these out-of-transit
variations, mentioning, in particular, the work of Lillo-Box et al. (2014) on the close-
in giant planet Kepler-91 b, which orbits a red-giant star. In my case, my model does
not attempt to characterize these variations, and is limited to the transit signal and
the GP with components for the mesogranulation and the white noise. Nevertheless,
a characterization of the TESS transit of KELT-11 b accounting for this out-of-transit
variability would be an interesting exercise for a comparison with published pre-TESS
analyses.

Comparing the derived planetary parameters to the ones from Pepper et al. (2017),
the periods are in agreement within 3-σ. As for the planetary radius, and considering
the stellar radius from Pepper et al. (2017), I obtain a value of 1.207+0.117

−0.091 RJ, in
agreement within 2-σ with the published one. This difference in radius might be
due to the larger scatter in the photometric data from Pepper et al. (2017), when
compared to the TESS light curve (see figures 1 and 2 of Pepper et al. (2017)).

98



Parameter Prior Posterior 84% 16%

ameso [ppm] U(10, 1000) 82.22 +8.07 -7.28
bmeso [µHz] U(1, 280) 15.35 +4.42 -3.82
σ [ppm] U(10, 1000) 115.42 +3.24 -3.01
P [days] U(13.8, 14.8) 14.27346 +0.00725 -0.00695
t0 [BTJD] U(1356.0, 1358.0) 1357.0156 +0.0055 -0.0053
Rp/R? LU(0.001, 0.1) 0.0263 +0.0021 -0.0016
a/R? LU(1.5, 20) 8.90 +2.99 -2.26
i [deg] U(60.0, 90.0) 86.18 +2.78 -4.57
e U(0.0, 0.5) 0.27 +0.17 -0.19
ω [deg] U(0.0, 360.0) 123.03 +129.54 -80.99
u1 N (0.6, 0.1) 0.57 +0.09 -0.09
u2 N (0.09, 0.1) 0.07 +0.10 -0.10

Table 5.4: Prior and posterior distributions for all parameters in the GP + transit
model obtained in the characterization of the TESS light curve of TIC 441462736.01
(TOI 197.01; HD 221416 b). Figure C.2 shows an alternative look at the posterior
distributions of each parameter, through an histogram of all the posterior samples
drawn during the fit.

5.3.2 TIC 441462736.01

Planet candidate TIC 441462736.01 is also a known planet, discovered in short-
cadence TESS data by Huber et al. (2019), given the denomination of TOI 197.012

and also known as HD 221416 b. According to the discovery paper, the planet has a
radius of 0.836+0.031

−0.028 RJ and a mass of 0.190 ± 0.018 MJ, orbiting its host star on a
period of 14.2767±0.0037 days. The host is a subgiant with a radius of 2.943±0.064
R� and a mass of 1.212± 0.074 M�.

Table 5.4 shows the prior and posterior distributions of each parameter of the GP
+ transit model fitted to the TESS light curve of this target. Figure C.2 shows an al-
ternative look at the posterior distributions of each parameter, through an histogram
of all the posterior samples drawn during the fit. The oscillations envelope component
was not included in the GP since the oscillations for this target are present at higher
frequencies than the Nyquist frequency of TESS 30-min cadence data (∼ 283µHz),
with Huber et al. (2019) estimating νmax = 430± 18 µHz in their study using TESS
short-cadence data. Figure 5.10 shows the light curve with the complete model in
orange, as well as the transit component separately (in blue) in the top two panels.
Below is the PSD of the GP model, and its individual components, overplotted on the

2https://exofop.ipac.caltech.edu/tess/target.php?id=441462736
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Parameter Prior Posterior 84% 16%

ameso [ppm] U(10, 1000) 154.19 +23.41 -19.16
bmeso [µHz] U(1, 280) 43.57 +13.19 -10.61
σ [ppm] U(10, 1000) 266.73 +9.41 -9.96
P [days] U(5.7, 6.7) 6.2022 +0.0069 -0.0076
t0 [BTJD] U(1520.5, 1522.5) 1521.592 +0.017 -0.028
Rp/R? LU(0.001, 0.1) 0.0321 +0.0059 -0.0028
a/R? LU(1.5, 20) 4.68 +1.95 -1.67
i [deg] U(60.0, 90.0) 80.70 +6.84 -12.62
e U(0.0, 0.5) 0.27 +0.16 -0.18
ω [deg] U(0.0, 360.0) 148.56 +119.77 -90.23
u1 N (0.6, 0.1) 0.62 +0.10 -0.11
u2 N (0.09, 0.1) 0.11 +0.09 -0.10

Table 5.5: Prior and posterior distributions for all parameters in the GP + transit
model obtained in the characterization of the TESS light curve of TIC 348835438.01.
Figure C.3 shows an alternative look at the posterior distributions of each parameter,
through an histogram of all the posterior samples drawn during the fit.

power spectrum of the light curve, with the contributions from the transit removed.
Comparing the estimated planetary parameters to the ones from Huber et al.

(2019), shows that the periods are in agreement within 1-σ. Since this planet was first
discovered with TESS short-cadence data, the transit epoch t0 can also be compared
between both works. Huber et al. (2019) cite a value of t0 = 1357.0149+0.0025

−0.0026 BTJD,
again in agreement within 1-σ. As for the planetary radius, considering the stellar
radius from Huber et al. (2019), I obtain a value of 0.753+0.051

−0.043 RJ, in agreement with
their (seismic) radius within 2-σ.

5.3.3 TIC 348835438.01

Planet candidate TIC 348835438.01 was identified by my pipeline, as well as inde-
pendently identified by our collaborators, cementing our confidence in the transit’s
planetary nature. Radial-velocity follow-up observations of the target have, in the
meantime, been conducted and a confirmation of the planet is underway (Grunblatt
et al., in prep.).

Table 5.5 shows the prior and posterior distributions of the parameters of the GP
+ transit model fitted to the TESS light curve of this target. Figure C.3 shows an al-
ternative look at the posterior distributions of each parameter, through an histogram
of all the posterior samples drawn during the fit. Figure 5.11 shows the light curve
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Figure 5.10: Top: Light curve fit of planet candidate TIC 441462736.01 (TOI 197.01;
HD 221416 b). Black points and error bars correspond to the light curve data. The GP
predictive model is shown in orange, with the solid central line denoting the median
of the distribution and the shaded area the 1-σ interval. The transit component of
the model is depicted by the blue solid line. The panel below it has a zoom in of the
first transit of the light curve. Bottom: Power spectrum of the light curve in the panel
above. The PSD of the light curve is shown in light gray, with a slightly smoothed
version overlapped in dark gray. The PSD of the sum of the GP components in the
model in the panels above is shown as a solid red curve, with individual components
identified by different colors (see legend).
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Parameter Prior Posterior 84% 16%

ameso [ppm] U(10, 1000) 150.44 +20.78 -17.52
bmeso [µHz] U(1, 280) 7.47 +2.05 -1.66
σ [ppm] U(10, 1000) 217.83 +5.88 -5.20
P [days] U(9.5, 10.5) 9.9610 +0.0060 -0.0056
t0 [BTJD] U(1574.5, 1576.5) 1575.6549 +0.0073 -0.0091
Rp/R? LU(0.001, 0.1) 0.0321 +0.0033 -0.0019
a/R? LU(1.5, 20) 5.01 +1.40 -1.23
i [deg] U(60.0, 90.0) 83.49 +4.48 -7.27
e U(0.0, 0.5) 0.23 +0.18 -0.16
ω [deg] U(0.0, 360.0) 145.85 +140.90 -87.84
u1 N (0.6, 0.1) 0.63 +0.09 -0.09
u2 N (0.09, 0.1) 0.11 +0.10 -0.10

Table 5.6: Prior and posterior distributions for all parameters in the GP + transit
model obtained in the characterization of the TESS light curve of TIC 204650483.01.
Figure C.4 shows an alternative look at the posterior distributions of each parameter,
through an histogram of all the posterior samples drawn during the fit.

with the complete model in orange, as well as the transit component separately (in
blue) in the top two panels. Below is the PSD of the GP model, and its individual
components, overplotted on the power spectrum of the light curve, with the contri-
butions from the transit removed. Due to the high white noise level in the target’s
power spectrum, the oscillations envelope is not visible, despite being expected to
reside below the Nyquist frequency of TESS long-cadence data. For this reason, the
oscillations envelope component was not included in the GP model.

Considering the stellar radius from the TIC, the host star is a ∼ 3.98 R� red giant.
Under that assumption, the planet candidate has a radius of ∼ 1.243 RJ, which, when
combined with its period points to the possibility of the planet being an inflated hot
Jupiter (Fortney et al. 2007).

5.3.4 TIC 204650483.01

TIC 204650483.01 was the other not known candidate identified by my pipeline.
Initial analysis of the target’s pixel files indicated that the origin of one of the transits
might have been noise and not a physical source. This suspicion was also motivated
by the fact that our collaborators could not find the candidate’s transit with their
pipeline.

Nevertheless, given the promising characteristics of the remaining transit event,
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Figure 5.11: Top: Light curve fit of planet candidate TIC 348835438.01. Black points
and error bars correspond to the light curve data. The GP predictive model is shown
in orange, with the solid central line denoting the median of the distribution and the
shaded area the 1-σ interval. The transit component of the model is depicted by the
blue solid line. The panel below it has a zoom in of the first transit of the light curve.
Bottom: Power spectrum of the light curve in the panel above. The PSD of the light
curve is shown in light gray, with a slightly smoothed version overlapped in dark
gray. The PSD of the sum of the GP components in the model in the panels above is
shown as a solid red curve, with individual components identified by different colors
(see legend).
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follow-up RVs were obtained with the CHIRON spectrograph3, and the initial 10 RV
measurements available indicate the presence of a planet.

Given the availability of RV measurements for this target, I perform two fits to
the planet candidate. The first fit is the already seen GP + transit model that
fits only the light curve data and includes the characterization of the stellar signals
together with the transit in the time domain. For the second fit, I use the juliet
Python package (Espinoza et al. 2019), to fit a joint model to both transits and RVs
simultaneously. This joint model does not include the GP components to characterize
the stellar signals, and instead considers only a simple white noise component for the
transit and another for the RVs.

Starting with the results from the TESS light curve characterization with the GP
+ transit model, Table 5.6 shows the prior and posterior distributions of all model
parameters. Figure C.4 shows an alternative look at the posterior distributions of
each parameter, through an histogram of all the posterior samples drawn during the
fit. Figure 5.12 shows the light curve with the complete model in orange, as well as
the transit component separately (in blue) in the top two panels. Below is the PSD
of the GP model, and its individual components, overplotted on the power spectrum
of the light curve, with the contributions from the transit removed. Similarly to the
previous candidate, the oscillations envelope is also not visible in the power spectrum
of the target, so I did not include this component in the GP model.

Considering the stellar radius from the TIC, the host is a ∼ 3.38 R� red-giant
star and the candidate has a radius of ∼ 1.056 RJ.

Considering now the joint fit to both transits and RVs, juliet implements repa-
rameterizations of some model parameters to improve the Bayesian sampling. The
eccentricity, e, and the argument of periapsis, ω, are replaced by the more efficiently
sampled parameters,

√
e cosω and

√
e sinω, which keep an uniform sampling of the

eccentricity (Eastman et al. 2013). The quadratic limb-darkening coefficients, u1 and
u2, are replaced by q1 and q2, a more efficiently sampled parameterization introduced
in Kipping (2013). Finally, the ratio of radii, Rp/R?, and the impact parameter, b,
which is, itself, a reparametrization of the orbital inclination, are reparameterized
by r1 and r2, two random values which can be uniformly sampled between 0 and 1
and that ensure that all sampled values (of Rp/R? and b) are physically plausible, as
shown by Espinoza (2018).

Besides the transit parameters, the joint fit now also includes the RV velocity
semi-amplitude, K, the radial-velocity zero point, γ, and the radial-velocity jitter, σ.

3The CHIRON spectrograph is situated in the 1.5-meter telescope from the Small & Moderate
Aperture Research Telescope System (SMARTS), at the Cerro Tololo Inter-American Observatory
(CTIO), in Chile (see http://www.ctio.noao.edu/noao/content/CHIRON).
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Figure 5.12: Top: Light curve fit of planet candidate TIC 204650483.01. Black points
and error bars correspond to the light curve data. The GP predictive model is shown
in orange, with the solid central line denoting the median of the distribution and the
shaded area the 1-σ interval. The transit component of the model is depicted by the
blue solid line. The panel below it has a zoom in of the first transit of the light curve.
Bottom: Power spectrum of the light curve in the panel above. The PSD of the light
curve is shown in light gray, with a slightly smoothed version overlapped in dark
gray. The PSD of the sum of the GP components in the model in the panels above is
shown as a solid red curve, with individual components identified by different colors
(see legend).
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Parameter Prior Posterior 84% 16%

Model Parameters

P [days] U(9.5, 10.5) 9.9566 +0.0030 -0.0033
t0 [BTJD] U(1574.5, 1576.5) 1575.6540 +0.0058 -0.0071√
e sinω U(-1.0, 1.0) 0.26 +0.21 -0.24√
e cosω U(-1.0, 1.0) -0.28 +0.16 -0.13

r1 U(0.0, 1.0) 0.49 +0.27 -0.29
r2 U(0.0, 1.0) 0.302 +0.031 -0.015
a/R? LU(1.0, 20.0) 5.20 +1.06 -1.29
q1 U(0.0, 1.0) 0.63 +0.24 -0.25
q2 U(0.0, 1.0) 0.44 +0.29 -0.25
σTESS [ppm] LU(0.1, 1000.0) 210.69 +7.11 -7.16
K [m·s−1] U(0.0, 200.0) 136.27 +16.12 -13.75
γCHIRON [m·s−1] U(41300.0, 41400.0) 41310.7 +10.4 -6.8
σCHIRON [m·s−1] LU(0.001, 100.0) 27.63 +10.56 -6.60

Derived Properties

u1 0.68 +0.36 -0.38
u2 0.09 +0.42 -0.41
e 0.190 +0.119 -0.095
ω [deg] -37.366 +45.073 -29.104
a [AU] 0.082 +0.017 -0.020
i [deg] 84.22 +3.95 -7.44
Rp/R? 0.0309 +0.0031 -0.0014
Rp [RJ] 1.016 +0.101 -0.047

Table 5.7: Prior and posterior distributions for all parameters in the joint RV and
transit model, as well as derived orbital and planetary properties obtained in the char-
acterization of TIC 204650483.01. Besides the median of the posterior distributions,
the 68% confidence interval is also included, denoted by the 16% and 84% percentiles.

The RV jitter term is distinguished from the light curve’s one by their subscripts of
CHIRON and TESS, respectively.

The results of the characterization are shown in Table 5.7, which includes the prior
and posterior distributions for all the parameters in the joint model, as well as the
posterior distributions of all derived planetary and orbital parameters. Figures C.5
and C.6 show an alternative look at the posterior distributions of each model param-
eter and derived property, respectively. Figure 5.13 illustrates the results from the
joint RV and transit fit done with juliet. The upper panels show both the transit light
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curve and the RV data with their respective models denoted by a solid red line. The
panels below show the same models phase-folded according to the planet’s period,
and their respective residuals.

The orbital period, transit epoch and planetary radius obtained from the joint fit
all agree within 1-σ with the values from the light curve characterization alone. With
the introduction of the RV data, the eccentricity can now be constrained, and the
planet exhibits a slightly eccentric orbit with e = 0.19+0.119

−0.095. Despite the availability
of RV measurements, I cannot estimate the planetary mass since it requires a value
for the stellar mass, which is not available in the TIC.

An announcement and detailed characterization of this planet will be included in
a publication led by me, targeting late 2021 (Pereira et al. in prep.). This publication
will also include a spectroscopic characterization of the host star, to determine more
accurately its stellar properties. This, in turn, will provide an estimate of the stellar
mass which will lead to an estimation of the planet’s mass which will be combined
with its radius to determine its mean density. Considering that the light curves from
the TESS extended mission have been recently released for this target, I will also re-
evaluate the presence of oscillations in the faster-cadence data, potentially enabling
an asteroseismic characterization of this target.

5.3.5 TIC 394918211.01

Finally, planet candidate TIC 394918211.01 was a candidate identified by our col-
laborators. This target, although located in the southern hemisphere of TESS, has
a TESS magnitude of 10.79, falling outside of the range considered by the southern
sample defined here. Using my pipeline, I confirmed the presence of a transit signal
and classified it as a planet candidate. An interesting difference between this candi-
date and all previous ones is that three sectors of data are available for the target
from the first year of TESS observations.

In addition to the TESS light curve, 20 RV measurements have also been ob-
tained for this target with the CORALIE spectrograph (Queloz et al. 2000), with
evidence pointing to the presence of an object of planetary nature. In parallel to TIC
204650483.01, given the availability of RV measurements for this target, I perform
two fits, one to the TESS light curve only, using the GP + transit model and the
other to both the transit and RVs simultaneously.

Table 5.8 shows the prior and posterior distributions of all model parameters
from the characterization of the TESS light curve only, using the GP + transit
model. Figure C.4 shows an alternative look at the posterior distributions of each
parameter, through an histogram of all the posterior samples drawn during the fit.
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Figure 5.13: Results from the joint transit and RV fit of TIC 204650483.01. The
upper panel shows the transit model (in red) alongside the TESS light curve of the
target. Similarly, the middle panel shows the RV model (in red) alongside the RV
measurements. The lower panels contain, from left to right, the phase-folded (on the
planet’s period) transit and RV models and data, respectively. Below each phase-
folded panel are the residuals obtained from subtracting the model from the data
points, with the red dashed line denoting a zero offset. The transit panels additionally
include binned (10-point bins) data points. The root mean square of the residuals for
each dataset is denoted above the panels, on the right.
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Parameter Prior Posterior 84% 16%

ameso [ppm] U(10, 1000) 206.89 +21.96 -21.42
bmeso [µHz] U(1, 280) 6.68 +1.47 -1.22
σ [ppm] U(10, 1000) 703.44 +10.11 -10.17
P [days] U(3.88, 4.88) 4.37798 +0.00057 -0.00055
t0 [BTJD] U(1601.1, 1603.1) 1602.1205 +0.0091 -0.0092
Rp/R? LU(0.001, 0.1) 0.0389 +0.0026 -0.0017
a/R? LU(1.5, 20) 3.22 +0.77 -0.62
i [deg] U(60.0, 90.0) 80.70 +6.38 -9.57
e U(0.0, 0.5) 0.23 +0.17 -0.16
ω [deg] U(0.0, 360.0) 129.27 +105.28 -85.32
u1 N (0.6, 0.1) 0.58 +0.09 -0.09
u2 N (0.09, 0.1) 0.08 +0.10 -0.09

Table 5.8: Prior and posterior distributions for all parameters in our GP + transit
model obtained in the characterization of the TESS light curve of TIC 394918211.01.
Figure C.4 shows an alternative look at the posterior distributions of each parameter,
through an histogram of all the posterior samples drawn during the fit.

Figure 5.14 shows the light curve with the complete model in orange, as well as the
transit component separately (in blue) in the top two panels. Below is the PSD of
the GP model, and its individual components, overplotted on the power spectrum of
the light curve, with the contributions from the transit removed. Despite the larger
dataset available for this target, due to its faintness, the oscillations envelope is once
again not visible in the power spectrum of the target, which led us to not include this
component in the GP model.

Considering the stellar radius from the TIC, the host star is a ∼ 3.41 R� red
giant, with the planet candidate having a radius of ∼ 1.29 RJ. This estimated radius
suggests that this planet candidate might be inflated (Fortney et al. 2007).

For the joint fit of both transits and RVs, I consider the same model as in Sec-
tion 5.3.4, with the same reparameterizations discussed earlier. In this case, the RV
jitter term is distinguished from the light curve’s one by their subscripts of CORALIE
and TESS, respectively.

The results of the characterization are shown in Table 5.9, which includes the prior
and posterior distributions for all the parameters in the joint model, as well as the
posterior distributions of all derived planetary and orbital parameters. Figures C.8
and C.9 show an alternative look at the posterior distributions of each model param-
eter and derived property, respectively. Figure 5.15 illustrates the results from the
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Figure 5.14: Top: Light curve fit of planet candidate TIC 394918211.01. Black points
and error bars correspond to the light curve data. The GP predictive model is shown
in orange, with the solid central line denoting the median of the distribution and the
shaded area the 1-σ interval. The transit component of the model is depicted by the
blue solid line. The panel below it has a zoom in of the first transit of the light curve.
Bottom: Power spectrum of the light curve in the panel above. The PSD of the light
curve is shown in light gray, with a slightly smoothed version overlapped in dark
gray. The PSD of the sum of the GP components in the model in the panels above is
shown as a solid red curve, with individual components identified by different colors
(see legend).
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Parameter Prior Posterior 84% 16%

Model Parameters

P [days] U(4.0, 5.0) 4.3782 +0.0004 -0.0005
t0 [BTJD] U(1600.0, 1604.0) 1602.1195 +0.0073 -0.0062√
e sinω U(-1.0, 1.0) -0.05 +0.21 -0.19√
e cosω U(-1.0, 1.0) 0.09 +0.16 -0.18

r1 U(0.0, 1.0) 0.49 +0.26 -0.27
r2 U(0.0, 1.0) 0.381 +0.027 -0.016
a/R? LU(1.0, 20.0) 3.73 +0.47 -0.74
q1 U(0.0, 1.0) 0.53 +0.28 -0.26
q2 U(0.0, 1.0) 0.31 +0.30 -0.20
σTESS [ppm] LU(0.1, 1000.0) 534.06 +12.62 -13.38
K [m·s−1] U(0.0, 200.0) 95.88 +9.17 -8.58
γCORALIE U(12400.0, 12650.0) 12555.3 +6.2 -6.6
σCORALIE LU(0.001, 100.0) 0.11 +2.89 -0.11

Derived Properties

u1 0.44 +0.33 -0.28
u2 0.26 +0.36 -0.39
e 0.058 +0.061 -0.040
ω [deg] -15.830 +74.114 -50.910
a [AU] 0.059 +0.007 -0.012
i [deg] 83.00 +4.64 -6.98
Rp/R? 0.0387 +0.0027 -0.0016
Rp [RJ] 1.284 +0.089 -0.052

Table 5.9: Prior and posterior distributions for all parameters in the joint RV and
transit model, as well as derived orbital and planetary properties obtained in the char-
acterization of TIC 394918211.01. Besides the median of the posterior distributions,
the 68% confidence interval is also included, denoted by the 16% and 84% percentiles.

joint RV and transit fit done with juliet. The upper panels show both the transit light
curve and the RV data with their respective models denoted by a solid red line. The
panels below show the same models phase-folded according to the planet’s period,
and their respective residuals.

Once again, the orbital period, transit epoch and planetary radius are in agree-
ment within 1-σ between both fits. As with TIC 348835438.01, the radius estimate
suggests that the planet might be inflated (Fortney et al. 2007), making this candidate
another rare example of an inflated hot Jupiter orbiting an evolved star, and a prime
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Figure 5.15: Results from the joint transit and RV fit of TIC 394918211.01. The
upper panel shows the transit model (in red) alongside the TESS light curve of the
target. Similarly, the middle panel shows the RV model (in red) alongside the RV
measurements. The lower panels contain, from left to right, the phase-folded (on
the planet’s period) transit and RV models and data, respectively. Below each phase-
folded panel are the residuals obtained from subtracting the model to the data points,
with the red dashed line denoting a zero offset. The transit panels additionally include
binned (10-point bins) data points. The root mean square of the residuals for each
dataset is denoted above the panels, on the right.
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example for the study of planetary inflation in giant planets orbiting evolved hosts
(Section 1.3.5). Unlike TIC 204650483.01, results for this candidate suggest only
a very minor eccentricity, with a median distribution centered on e = 0.058+0.061

−0.040.
Again, due to no stellar mass being available in the TIC, the planetary mass could
not be estimated.

The publication announcing this discovery will be the same as the one containing
TIC 204650483.01, led by me and expected in late 2021 (Pereira et al. in prep.).
Following the same lines as for TIC 204650483.01, the publication will include a
spectroscopic characterization of the host star to determine more accurate stellar
properties, again leading to an estimation of the its mass which will be combined
with its radius to determine the planet’s mean density. There will also be a re-
evaluation of the potential for asteroseismology with the new data from the TESS
extended mission.

This improved stellar characterization is all the more relevant for the study of
planetary radius inflation, as precise planetary properties are essential to be able to
constrain the processes involved (Grunblatt et al. 2017; Thorngren et al. 2021).

5.4 Summary
Having introduced and analyzed the results from the characterization of all five planet
candidates, I now draw some conclusions on the overall performance of the search.
Cross-checking the search’s target list with that of known hosts indicates that only
two known hosts are present in the sample. Both these hosts, KELT-11 and TOI-
197, were identified by the pipeline and correctly classified as planet candidate hosts,
which reinforces the confidence in the results of the search. Both these hosts are also
subgiant stars, which ended up being included in the sample due to the expansion of
the range of stellar radii considered, to account for uncertainties in the TIC values.

The remaining three, new planet candidates all have RV follow-up observations
(although more RV measurements are still underway) and their planetary nature is
tentatively confirmed. Grunblatt et al. (in prep.) will publish the results on TIC
348835438.01, and I will publish results on TIC 204650483.01 and TIC 394918211.01
(Pereira et al. in prep.). Returning to Figure 1.1, I can now show an updated version,
Figure 5.16, which includes all candidates from the search, both the known subgiant
hosts (as green empty circles) and the three new planet candidates (as green solid
circles).
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Figure 5.16: Updated mass-period diagram of known exoplanets orbiting red-giant
branch stars, initially shown in Figure 1.1. Known planets orbiting red giants detected
by the transit method are depicted as red circles and those detected in RV surveys
as blue crosses (in which case the masses are lower limits). All planet candidates
identified in our sample are shown in green, and fall within the shaded region. The
two known planets orbiting subgiant hosts are shown as empty circles, whilst the three
new candidates identified are shown as solid circles. The dashed-dotted line marks
the mass of Neptune. The shaded area approximately corresponds to the parameter
space probed by TESS considering one sector of data (M > MNeptune; P ≤ 20d).
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Chapter 6

Conclusions

At the start of this thesis, I introduced the general goal of improving the knowledge of
the formation and evolution of planetary systems, focusing on giant planets orbiting
giant stars. Specifically, I was interested in close-in giant planets orbiting red-giant
stars, looking to better constrain their occurrence rate, which is still not fully under-
stood (Grunblatt et al. 2019) and to exploit their unique properties in the study of
giant planet inflation (Lopez and Fortney 2016; Grunblatt et al. 2017).

To pursue this goal, I specified three objectives. In this final chapter, I recap all
major results from my thesis in the context of each of these objectives. Then, I finish
by discussing some future prospects in the search for giant planets around giant stars.

6.1 Thesis results

6.1.1 Transit characterization

For the improved characterization of transiting light curves, in particular from evolved
hosts, I developed and implemented a method using Gaussian processes, built on
top of an existing framework, that could characterize transits and stellar signals
simultaneously (Section 3.2.3). This change in methodology is particularly crucial
for giant stars, as the granulation and oscillations have high amplitudes and similar
timescales to that of the duration of transits of close-in giant planets orbiting evolved
stars (Section 2.2).

To that end, I defined an expression for the granulation signals in the time domain
that is the exact counterpart of its frequency-domain equation, as well as an approx-
imate expression for the oscillations envelope (Section 3.2). This Gaussian process
model was then combined with a quadratic limb-darkened model for the transit signal,
building a unified model in the time domain.
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To systematically test this method, I applied it to both TESS simulated light
curves (Section 3.3.3) and Kepler light curves (Section 3.3.4) without transits. When
testing with TESS simulated light curves, I found that the method was capable of
recovering the properties of the simulated stellar signals within uncertainties, when
considering a model with mesogranulation and oscillations only. Tests with Kepler
light curves showed that this method’s implementation was capable of recovering
the same stellar signals as the ones estimated using power-spectrum fitting methods,
widely used in the literature.

In both tests, I show that the inferred value of νmax, a global asteroseismic prop-
erty, was always accurate and precise, demonstrating the method’s ability to do time-
domain asteroseismology.

By adding transits to the TESS simulated light curves, I then evaluated the
performance of the method when recovering planetary properties, comparing it with a
simpler transit model (Section 3.3.5). Overall, I found that the GP method determines
more accurate and precise values, with particular improvements on the inferred planet
radius (with respect to the stellar radius).

I have published an article with a description of the method and all results from
Section 3.3 (Pereira et al. 2019). The method’s implementation is open-source and
available through my Github repository (https://github.com/Fill4/gptransits).

6.1.2 Transit search pipeline

To explore the TESS data, in particular its FFIs, and search for new planets, I
assembled a data processing pipeline (Chapter 4). This pipeline was comprised of
multiple open-source software packages, implemented and adjusted as necessary, with
some additional data processing methods added.

The pipeline starts by extracting pixel information from the FFIs for any TESS
target identified by its TIC (which is a unique ID from the TESS Input Catalog
(Stassun et al. 2019)) (Section 4.1). Then, a light curve is extracted from the pixels,
and is corrected for any known systematics. The correction methodology further
includes a set of time-stamped ranges that are removed from the data. These were
identified as noisy patterns present in a representative sample of light curves for each
TESS sector that were not removed by the initial correction procedure (Section 4.2).

Transits are searched for in the corrected light curves using two different tools,
TLS and BLS, and the most significant transit found by each method is flagged for
validation (Section 4.3). The pipeline processing is fully automated until this point,
and for any targets which successfully completed all previous stages, a summary
figure is created which contains relevant information for the transit validation (see
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Figure 4.6).
Finally, validation is performed both through a statistical evaluation of a signal

detection efficiency (SDE) metric, calculated for each transit, as well as through the
use of a tool for automated astrophysical false-positive evaluation of transits, VESPA
(Section 4.4).

6.1.3 TESS southern search

To search for planets in the TESS data, I started by selecting a sample of 40,772 bright
(TESS magnitude < 10) low-luminosity red-giant branch stars (R? ∼ 2.5 − 10 R�)
observed in the southern hemisphere of TESS. All targets were then pushed through
the pipeline, which extracted light curves from the TESS FFIs, performed systematics
correction and searched for transits, producing a summary plot for each one.

For the validation of transit signals, initial statistical false-positives were identified
using the SDE metrics calculated by the pipeline for each target, resulting in a list
of ∼3000 targets likely to have a physical transit signal. This sample constitutes a
reproducible, magnitude limited sample of TESS southern hemisphere targets with
statistically significant transit-like signals, representing an ideal starting point for
population studies (i.e. occurrence rates), as discussed in Section 5.2.

For my case, I carried out a visual analysis of all ∼3000 targets, short-listing 254
targets as having signals of physical origin. This reduced sample was then re-analyzed
both through an additional visual inspection, as well as through the application of
VESPA, in order to try to attribute a specific astrophysical nature to each signal.

All things considered, I classified four targets with signals with a high probability
of being of transits of planetary nature. Of these four planet candidates, two were
already known planets (the only known planets present in the sample), and two were
new detections. Below I list some of their properties:

• KELT-11 b: An already known planet (Pepper et al. 2017) for which I determine
a radius of ∼ 1.207 RJ, in agreement within 2-σ with the radius from Pepper
et al. (2017). The same publication lists a mass of ∼ 0.195 MJ for the planet,
orbiting a ∼ 2.72 R� subgiant star on a period of ∼ 4.737 days.

• TOI-197.01: A TESS confirmed planet orbiting a ∼ 2.943 R� subgiant star on a
period of∼ 14.277 days (Huber et al. 2019). Similarly to the previous candidate,
I find a radius of ∼ 0.753 RJ, in agreement within 2-σ with the published value.
Having access to RV follow-up, Huber et al. (2019) also estimated a planetary
mass of ∼ 0.190 MJ.

• TIC 348835438.01: Planet candidate found independently by my pipeline and
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by colleagues in a collaboration, with confirmation to soon follow (Grunblatt
et al., in prep.). The planet has a radius of ∼ 1.243 RJ, orbiting a ∼ 3.98 R�
red-giant star (according to the TIC) on a period of ∼ 6.202 days. The planet’s
radius suggests that it is possibly inflated.

• TIC 204650483.01: Planet candidate originally found by my pipeline. Although
an initial analysis pointed to one of the transits being caused by noise, prelim-
inary follow-up RVs clearly point to an object of planetary nature. The planet
has a radius of ∼ 1.016 RJ orbiting a ∼ 3.38 R� red-giant star (according to
the TIC) on a period of ∼ 9.957 days. Results also suggest that the planet has
a slightly eccentric orbit with e = 0.190. A publication announcing this planet
and including a detailed analysis of itself and its host star will be led by me
(Pereira et al. in prep.).

In addition to the four candidates found during the search, I also introduced
planet candidate TIC 394918211.01, initially found by colleagues in our collaboration
and validated also by my pipeline. This target, although located in the southern
hemisphere of TESS, has a TESS magnitude of 10.79, falling outside of the range
considered by my southern sample. Through RV follow-up observations, I have found
evidence pointing to the planetary nature of the candidate.

This planet candidate might be an inflated hot Jupiter with a radius of∼ 1.284 RJ,
and orbits its host every ∼ 4.378 days with a low eccentricity of e = 0.058. The host
is a ∼ 3.41 R� star, according to the TIC.

The announcement and detailed analysis of this planet and its host will also be
led by me, in the same publication as TIC 204650483.01 (Pereira et al. in prep.).
The analysis will include a study of the possible origin and efficiency of the radius
inflation of these planets.

All in all, three new planet candidates, tentatively confirmed as planets, have been
found in the southern hemisphere of TESS, improving the picture of close-in giant
planets orbiting red-giant stars, as shown in Figure 5.16. Two of these candidates also
appear to have inflated radii, potentially helping to unveil the origins and efficiency
of the processes responsible for planetary radius inflation (Lopez and Fortney 2016;
Grunblatt et al. 2017), something I will explore with TIC 204650483.01 and TIC
394918211.01 (Pereira et al. in prep.). Finally, the eventual confirmation of both new
candidates found in our sample, TIC 348835438.01 and TIC 204650483.01, combined
with our reproducible sample of ∼3000 TESS southern hemisphere LLRGB targets
with statistically significant transit signals, should provide a good starting point to
an occurrence rate study of close-in giant planets orbiting evolved stars with TESS,
attesting to the sample’s legacy value.
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6.2 Future Work
As just mentioned, with the results from the newly discovered planet candidates, I
will look into planet radius inflation around evolved stars (Pereira et al. in prep). At
the same time, confirmation of the two planet candidates included in the magnitude-
limited sample could lead to a study on the occurrence rate of close-in giant planets
orbiting evolved stars with TESS. A straightforward path from here would be to
expand on the sample of stars selected for this thesis.

Expanding to the northern sectors of TESS could lead to a first all-sky occurrence
rate study for these planets. Considering the fact that, even with a decreased number
of detections of oscillations (Mackereth et al. 2021), spectroscopic characterization
of the hosts is still possible, the sample of stars could also be expanded to fainter
targets, increasing the number of red-giant stars available approximately tenfold for
every point in magnitude. Moreover, given that the 10-min cadence of the TESS
expanded mission unlocks higher frequencies of oscillation, the target sample could
also be further expanded into subgiant stars, widening the possibilities when probing
the properties of planetary systems, from the main-sequence to the red-giant branch.

Looking further into the future, the PLAnetary Transits and Oscillations of stars
mission (PLATO; Rauer et al. 2014) should again provide a wide field-of-view. Whilst
data processing pipelines will surely need to be adapted, our characterization method
should still prove useful at modeling any new planetary systems that are found.
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Appendix A

Parseval normalization of the
celerite PSD

The PSD in Equation (3.20), which we rewrite here,

P (ω) =
√

2
π

S0

(ω/ω0)4 + 1
. (A.1)

shares the functional form of the PSD describing the granulation in Kallinger et al.
(2014) (Equation 2.23),

P (ν) = 2
√

2
π

a2/b

(ν/b)4 + 1
, (A.2)

However, Equation (A.1) is not normalized according to Parseval’s theorem.

For a Parseval-normalized PSD, the variance of the light curve must equal a2. In
order to normalize it, we need to find a constant K that ensures that the previous
condition is met. From Foreman-Mackey et al. (2017), the variance of a light curve
described by the kernel in Equation (A.1) is

k(τ = 0) = S0ω0√
2
, (A.3)

which gives
a2 = S0ω0√

2
. (A.4)

Moreover, from Foreman-Mackey et al. (2017), ω0 is expressed as

ω0 = 2πb. (A.5)
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Equating Equations (A.1) and (A.2), we get

K

√
2
π

S0

(ω/ω0)4 + 1
= 2
√

2
π

a2/b

(ν/b)4 + 1
, (A.6)

and substituting for Equations (A.4) and (A.5), K becomes

K = 2
√

2π. (A.7)

With the value for K, we can then rewrite Equation (A.1) normalized according
to Parseval’s theorem as

P (ω) = 4S0

(ω/ω0)4 + 1
. (A.8)
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Appendix B

VESPA figures

Figure B.1: False-positive probability (FPP) summary plot from VESPA, for the transit
of planet candidate TIC 55092869.01 (KELT-11 b). For a description of all the
elements see Figure 4.7.
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Figure B.2: False-positive probability (FPP) summary plot from VESPA, for the transit
of planet candidate TIC 441462736.01 (TOI-197 b). For a description of all the
elements see Figure 4.7.
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Figure B.3: False-positive probability (FPP) summary plot from VESPA, for the transit
of planet candidate TIC 348835438.01. For a description of all the elements see
Figure 4.7.
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Figure B.4: False-positive probability (FPP) summary plot from VESPA, for the transit
of planet candidate TIC 204650483.01. For a description of all the elements see
Figure 4.7.
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Figure B.5: False-positive probability (FPP) summary plot from VESPA, for the transit
of planet candidate TIC 394918211.01. For a description of all the elements see
Figure 4.7.
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Appendix C

Posterior histograms
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Figure C.1: Posterior distributions for all parameters in the GP + transit model
obtained in the characterization of the TESS light curve of TIC 55092869.01 (KELT-
11 b).
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Figure C.2: Posterior distributions for all parameters in the GP + transit model
obtained in the characterization of the TESS light curve of TIC 441462736.01 (TOI
197.01; HD 221416 b).
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Figure C.3: Posterior distributions for all parameters in the GP + transit model
obtained in the characterization of the TESS light curve of TIC 348835438.01.
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Figure C.4: Posterior distributions for all parameters in the GP + transit model
obtained in the characterization of the TESS light curve of TIC 204650483.01.
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Figure C.5: Posterior distributions for all model parameters in the joint RV and
transit characterization of TIC 204650483.01.
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Figure C.6: Posterior distributions for all derived parameters in the joint RV and
transit characterization of TIC 204650483.01.
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Figure C.7: Posterior distributions for all parameters in the GP + transit model
obtained in the characterization of the TESS light curve of TIC 394918211.01.
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Figure C.8: Posterior distributions for all model parameters in the joint RV and
transit characterization of TIC 394918211.01.
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Figure C.9: Posterior distributions for all derived parameters in the joint RV and
transit characterization of TIC 394918211.01.
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